Strategies for data analysis: Cohort studies

Postgraduate Research Training in Reproductive Health

Dr Calvin Tiyou Kenmeni

Department of Obstetrics and Gynaecology Faculty of Medicine and Biomedical sciences (FMBS) University of Yaounde I – Cameroon <u>tiyoukc@yahoo.fr</u>

Yaounde, 14 November 2007

Two main types of epidemiologic studies

- Observational : the epidemiologist observes the association between exposure and outcome (e.g. passive smoking and breast cancer)
- Experimental : the epidemiologist performs an experiment, he/she controls the conditions under which the study is conducted (he/she is able to assign subjects to a treatment or comparison group and then follow them up to see if there are differences in the occurrence of disease between the two groups; e.g. calcium supplementation and pre-eclampsia)

Two types of observational studies

- Cohort study : one begins with a group of persons exposed to a factor of interest and a group of persons not exposed. The persons are then followed for the development of the disease of interest.
- **Case-control study** : one assemble a group of persons with a disease (cases) and a group of persons with no disease (controls). The history of past exposure to the factor of interest is then compared between the cases and controls.

Design of cohort studies : prospective

Design of cohort studies: prospective

Design of cohort studies: prospective

Working Example

Welsh Nickel Workers Study

Description of the study and raw data in...

Breslow, N.E., Day N.E. Statistical Methods in Cancer Research. IARC, 1987:369-74

Study design

- Population : a Nickel factory of South Wales
- Nickel production by decomposition of gaseous nickel compounds
- Exposure : according to information on jobs at high risk of exposure held from 1902 to 1934
- Risk period : count cases of RC* between April 1934 to December 1981
- Outcome: respiratory, mostly lung and nasal cancer

* RC = respiratory cancer

Study design

Which is a fundamental condition for the validity of this cohort design ?

Subjects need to be :

A random sample of the population ?
At risk of developing lung or nasal cancer ?
Unlikely to get colon cancer ?
Randomized to nickel exposure ?
Willing to answer questionnaires for many

5. Willing to answer questionnaires for many years ?

Which is a fundamental condition for the validity of this cohort design ?

Subjects need to be :

A random sample of the population ?
At risk of developing lung or nasal cancer ?
Unlikely to get colon cancer ?
Randomized to nickel exposure
Willing to answer questionnaires for many years ?

"At risk of Respiratory Cancer"

 Never had respiratory cancer : exclude prevalent cases

 Still have two lungs ...and a nose : exclude subjects who cannot travel from the denominator to the numerator

"Incident Respiratory Cancer"

Incident = "newly diagnosed"

Between April 1,1934 and December 31,1981
Risk Period = 47 years

Employed in the factory before 1925

What is the **risk** of respiratory cancer in this study ?

- 1. Probability of developing RC per 100,000
- workers and per year
- 2. Probability of developing RC over 47 years
- 3. The excess probability of RC due to exposure
- The ratio of the probability of RC in exposed over the probability of RC in unexposed
- 5. A synonymous for the odds of RC

What is the risk of respiratory cancer in this study ?

- 1. Probability of developing RC per 100,000
- workers and per year
- 2. Probability of developing RC over 47 years
- 3. The excess probability of RC due to exposure
- The ratio of the probability of RC in exposed over the probability of RC in unexposed
- 5. A synonymous for the odds of RC

Cohort Design

SOUTH WALES REFINERY WORKERS

Risk of respiratory cancer in unexposed

Respiratory Cancer

Total

Person-years Risk = Interpretation : Unexposed to Nickel 90 450 11,000

What is the risk of respiratory cancer in unexposed ?

Calculating Risk in Unexposed

Risk in Unexposed

Interpretation :

Probability of developing a respiratory cancer in workers unexposed to nickel is 20% over 47 years

Cohort Design

SOUTH WALES REFINERY WORKERS

Risk of respiratory cancer in exposed

Respiratory Cancer

Total

Person-years Risk = Interpretation : Exposed to Nickel 100 250 4,100

Calculating Risk in Exposed

Risk in Exposed

Interpretation :

Probability of developing a respiratory cancer in workers exposed to nickel is 40% over 47 years

What is an incidence rate of respiratory cancer in this study?

- 1. Probability of developing RC per 100,000 workers and per year
- 2. Probability of developing RC over 47 years
- 3. The excess probability of RC due to exposure
- 4. The ratio of the probability of disease in exposed over the probability of disease in unexposed
- 5. Equivalent to the odds of disease (odds of RC)

Notation

- R = Risk
- IR = Incidence rate
- E+ = Exposed to nickel
- R(E+) = Risk in exposed to nickel
- $E^- = Non$ -exposed to dimes
 - IR(E+) = Incidence rate in exposed to nickel

Incidence rate (IR) = risk per unit of time

• Risk period = 47 yrs.

Some subjects followed-up for < 47 yrs.
E.g., cases, losses to follow-up

Solution # 1

divide risk by average durationof follow-up (24yrs)

Incidence rate (IR) = risk per unit of time

Solution # 2

- Use person-time as denominator
- 1 person followed for 2 years = 2 person-year
- I person followed for 1 year = 1 person-year

Study design

Example

	Exposed to Nickel	Unexposed to Nickel
Respiratory Cancer	100	90
Person-years	4,100	11,000
Incidence Rate	?	0.008

IR (E+) = $\begin{pmatrix} 100 \text{ cases RC} \\ 4,100 \text{ person-years} \end{pmatrix} = 0.024 / yr$

What is an incidence rate of respiratory cancer in this study?

- 1. Probability of developing RC per 100,000 workers and per year
- 2. Probability of developing RC over 47 years
- 3. The excess probability of RC due to exposure
- 4. The ratio of the probability of disease in exposed over the probability of disease in unexposed
- 5. Equivalent to the odds of disease (odds of RC)

What is an incidence rate of respiratory cancer in this study?

- 1. Probability of developing RC per 100,000 workers and per year
- 2. Probability of developing RC over 47 years
- 3. The excess probability of RC due to exposure
- 4. The ratio of the probability of disease in exposed over the probability of disease in unexposed
- 5. Equivalent to the odds of disease (odds of RC)

What is an attributable risk in this study?

- 1. The ratio of the risk of RC in exposed to Nickel over the risk in unexposed?
- 2. The risk of RC that is not due to Nickel exposure
- 3. The excess rate of RC observed in subjects exposed to nickel compared to unexposed
- 4. The number of workers that need to be exposed to nickel in order to observe an additional case of RC5. All of the above

Absolute Effect : Attributable Risk (AR)

AR= IR(E+) - IR(E-)

- = 0.024/yr 0.008/yr = 0.016/yr
- = 16 /1,000/y
- = Excess IR of RC due to nickel

Synonymous :

- Excess Risk
- Risk Difference
- Excess Rate

What is an attributable risk in this study?

- 1. The ratio of the risk of RC in exposed to Nickel over the risk in unexposed?
- 2. The risk of RC that is not due to Nickel exposure
- 3. The excess rate of RC observed in subjects exposed to nickel compared to unexposed
- 4. The number of workers that need to be exposed to nickel in order to observe an additional case of RC5. All of the above

What is an attributable risk in this study?

- 1. The ratio of the risk of RC in exposed to Nickel over the risk in unexposed?
- 2. The risk of RC that is not due to Nickel exposure
- 3. The excess rate of RC observed in subjects exposed to nickel compared to unexposed
- 4. The number of workers that need to be exposed to nickel in order to observe an additional case of RC5. All of the above

What is a relative risk in this study?

- 1. The ratio of the IR of RC in exposed to nickel over the IR in unexposed ?
- 2. The IR of RC that is not due to nickel exposure
- 3. The excess risk of RC observed among subjects exposed to nickel
- 4. The number of workers that need to be exposed to nickel in order to observe an additional case of RC
- 5. None of the above

Relative Effect : Relative Incidence Rate (RIR)*

* Also referred to as relative risk (RR)

What is a relative risk in this study?

- 1. The ratio of the IR of RC in exposed to nickel over the IR in unexposed ?
- 2. The IR of RC that is not due to nickel exposure
- 3. The excess risk of RC observed among subjects exposed to nickel
- 4. The number of workers that need to be exposed to nickel in order to observe an additional case of RC
- 5. None of the above

What is a relative risk in this study?

- 1. The ratio of the IR of RC in exposed to nickel over the IR in unexposed
- 2. The IR of RC that is not due to nickel exposure
- 3. The excess risk of RC observed among subjects exposed to nickel
- 4. The number of workers that need to be exposed to nickel in order to observe an additional case of RC
- 5. None of the above

Relative Effect

Risk in exposed is a multiple of risk in unexposed

[R (E+) = [IR(E-) * RIR] = [0.008 * 3.0]= 0.024/yr

Relative or Absolute Effect

IR (E+)	IR (E-)	RR	AR
24/1000/yr	8/1000/yr	3.0	16/1000/yr
60/1000/yr	20/1000/yr	3.0	40/1000/yr

Interpretation

 Attributable risk measures clinical and public health importance of the causal relationship

 Relative risk assesses strength of the association

Example : Wrapping up

	250 Exposed To Nickel	450 Unexposed to Nickel	
Respiratory Cancer	100	90	
Person-years	4,100	11,000	
Incidence Rate	0.024/yr	0.008/yr	
Relative Incidence rate	3.0		
Attributable Risk	0.016/yr		

Prospective Studies : Advantages

- Exposure to postulated cause is assessed before occurrence of disease
- Possible to estimate all measures of incidence and effect

 Possible to study several outcomes to one cause

Prospective Studies : Disadvantages

- Requires large investments in time, human and financial resources
- Requires large sample sizes (e.g., 110.000 nurses, 59.600 doctors, 1.2 millions volunteers)
- Not easy to reproduce (Re: consistency of the association)

Thank you for lending me your ears

Special acknowledgements to

Hans Wolff, Hôpitaux Universitaires de Genève (HUG)