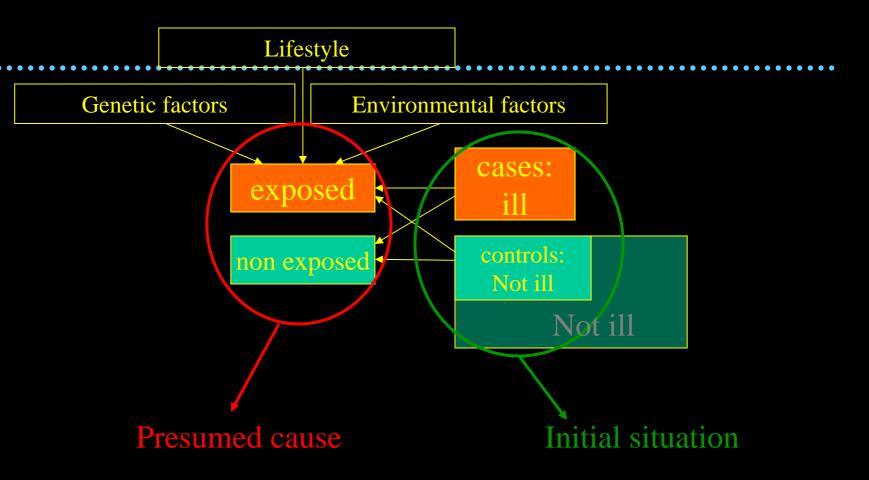
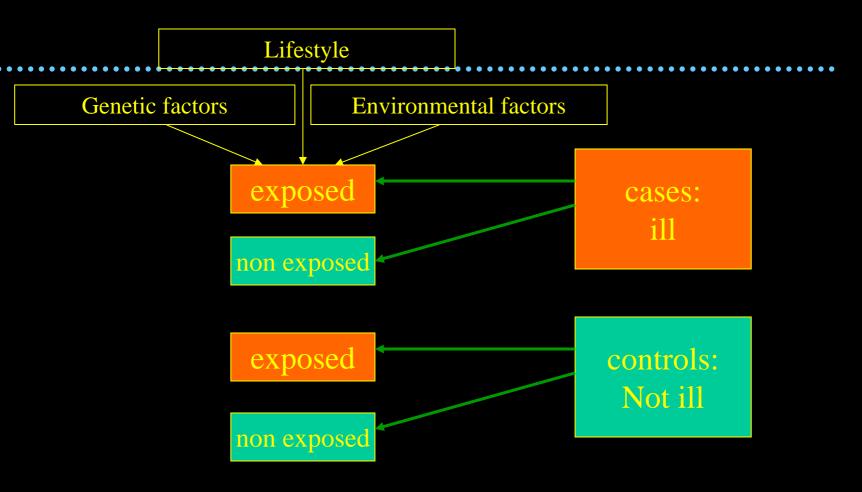
Case-control studies

Hans Wolff

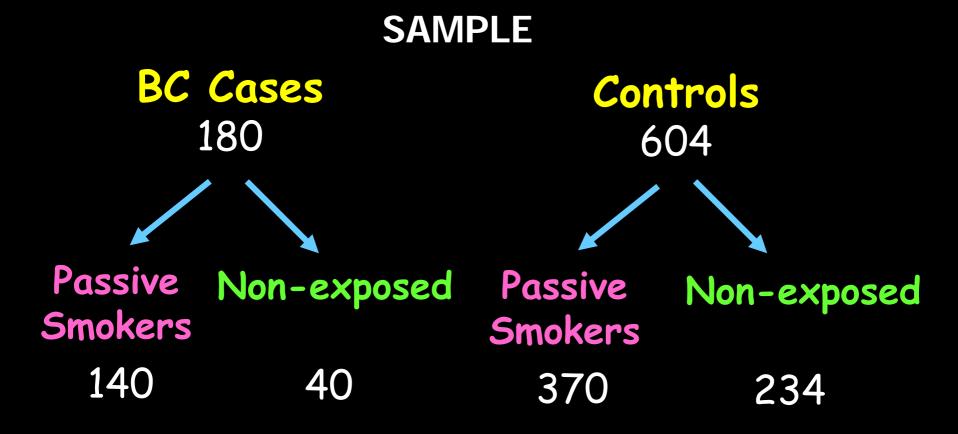

Division d'épidémiologie Clinique Département de médecine communautaire Hans.Wolff@hcuge.ch


Outline

- Case-control study
- Relation to cohort study
- Selection of controls
- Sampling schemes of controls

Case-control studies (CCS)

Case-control studies (CCS)



Did they were exposed or not?

1. Example: Passive Smoking & Breast Cancer

	Cases		Cont	rols	Odds
Smoking	n	%	n	%	Ratio
Unexposed	40	22.2	234	38.7	1.0
Passive	140	77.8	370	61.3	2.2

Case-Control Design

Presence or absence of disease ...

... is fixed by design in case-control studies.

- Cases have the disease
- Controls don't.
- We can NOT compute a risk of disease
- We CAN compute prevalence of exposure in cases and controls

Passive Smoking & Breast Cancer

- Cases: all incident breast cancer in Geneva
- Controls: random sample of the Geneva female population
- Exposure: questionnaire on lifetime history of exposure to passive smoke

Have you ever been exposed?

- to passive smoking at least 1 hour per day for at least 1 year? (Yes / No)
- At home? At work? During leisure time?
- If yes, describe each episode of exposure
 - Duration, who, size of the room, etc...
 - Unexposed = never active, never passive

What should be always true for a case-control study?

- 1. Cases and controls are randomized with respect to exposure.
- 2. Cases are a representative sample of all cases in the general population
- 3. Controls are a representative sample of the general population
- 4. Cases and controls have the same population of origin
- 5. Always start with some cases, then identify their valid controls

Fundamental conditions for the validity of this case-control design

Cases and controls:

- Originate from Geneva resident, <75 y.
- are sampled independently of their exposure to passive smoke

Solution:

- All incident cases over a given time period
- Controls are a random sample of population

Case Definition

- Incident (= newly diagnosed)
- Between 1/1/92 and 12/31/93
- Resident of Geneva
- Aged < 75 yrs
- Identified: all pathology labs of Geneva

Control Definition

- Never diagnosed with breast cancer
- Between 1/1/92 and 12/31/93
- Resident of Geneva
- Aged < 75 yrs
- Stratified random sample
 - Population controls
 - Why not use hospital controls?

Prevalence of Passive Smoking

	Cases	Controls
Smoking	n	n
Unexposed	40	234
Passive	140	370

The proportion of passive smoker cases is...

1.
$$\left(\frac{40}{234}\right)$$

4.
$$\left[\frac{370}{234} \right]$$

2.
$$\left[\frac{140}{40} \right]$$

5.
$$\begin{bmatrix} 370 \\ 604 \end{bmatrix}$$

3.
$$\left[\frac{140}{180} \right]$$

Prevalence of Passive Smoking

	Cases		Controls	
Smoking	n	%	n	%
Unexposed	40	22.2	234	38.7
Passive	140	77.8	370	61.3

Prevalence of Passive Smoking

	Cases		Controls	
Smoking	n	%	n	%
Unexposed	40	22.2	234	38.7
Passive	140	77.8	370	61.3

The odds of passive smoking in CASES is...

1.
$$\left(\frac{140}{40}\right) = 3.5$$
 3. $\left(\frac{140}{180}\right) = 77.8$

2.
$$\left(\frac{77.8}{22.2}\right) = 3.5$$
 4. $\left(\frac{140}{77.8}\right) = 1.8$

5. Answers 1 or 2

Odds of Passive Smoking in CASES

Smoking history	N	%
Unexposed	40	22.2
Passive	140	77.8
Total	180	100.0
Odds =	140/40=	77.8/22.2=
Odds =	3.5	3.5

Odds of Passive Smoking in CONTROLS

Smoking history	N	%
Unexposed	234	38.7
Passive	370	61.3
Total	604	100.0
Odds =	370/234=	61.3/38.7=
Odds =	16	16

AR in case-control study?

Recall

 $\overline{AR_{duration}} = Risk (E+) - R(E-)$

Since risk cannot be computed directly from a casecontrol study, AR cannot be computed either.

RR in case-control study?

$$RR = Risk(E+) / R(E-)$$

Since risk cannot be computed directly from a case-control study, RR cannot be computed either

Odds Ratio of Passive Smoking

Group

Odds

Odds Ratio

Cases

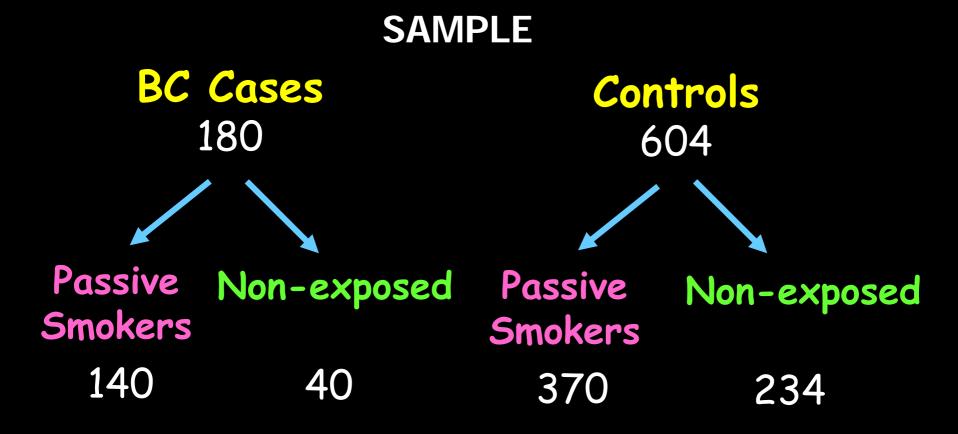
3.5

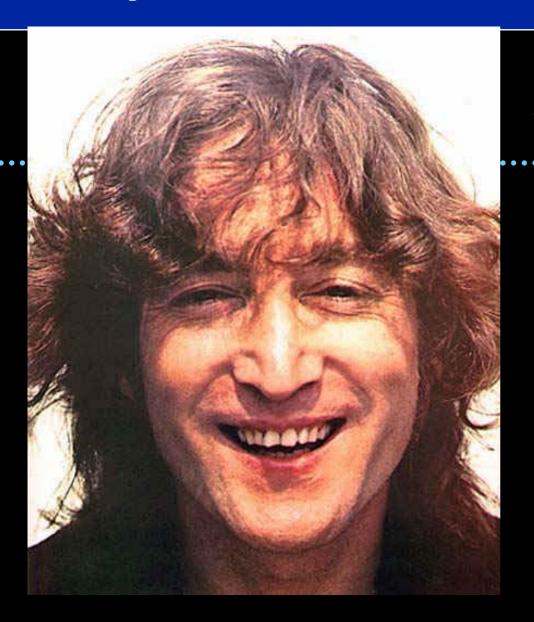
$$\left(\frac{3.5}{1.6}\right) = 2.2$$

Controls 1.6

$$\left[\frac{1.6}{1.6}\right] = 1.0$$

Reference Group


Interpretation of the Odds Ratio (1)


 The odds of being a passive smoker are 2.2 greater in breast cancer cases than in population controls.

Alternatively:

- The odds of breast cancer is 2.2 greater in those exposed to passive smoke than in unexposed.
 - WHY ?

Case-Control Design

Imagine...

you could have done the perfect cohort study instead of the case-control study

Cohort Design (Risk period: 2 yrs)

Female Population of Geneva

Passive Smokers 55,500

Breast Cancer

140

No Breast Cancer 55,360 Non-exposed 35,100

Breast Cancer

40

No Breast Cancer

35,060

Odds Ratio of Breast Cancer

Breast Cancer	Passive Smokers	Unexposed
Present (A)	140	40
Absent (B)	55,360	35,060
Odds (A/B)	0.00253	0.00114
Odds Ratio	2.2	1.0 (ref)

Identity of Odds Ratio

- Case-control study:
 - Odds ratio of passive smoking = 2.2
- Cohort study:
 - Odds ratio of breast cancer = 2.2
 - Same interpretation
- Identical Odds Ratio in the cohort and in the case-control studies.

 F_n = fraction included into the sample

Relation of Case-Control to Cohort Studies

- In a case-control study:
 - CASES are sampled among people in the unexposed and passive smokers cohorts who did develop breast cancer
 - CONTROLS are sampled among people in the unexposed and passive smokers cohorts who did **not** develop breast cancer

Odds Ratio and Relative Risk

• Relative Risk =
$$\left(\frac{\frac{140}{55,500}}{\frac{40}{35,100}}\right) = 2.2$$

Note effect of rare disease on denominators

• Odds Ratio =
$$\left[\frac{\frac{140}{55,360}}{\frac{40}{35,060}}\right] = 2.2$$

Interpretation of the Odds Ratio (2)

 The ODDS of breast cancer is 2.2 greater in those exposed to passive smoke than in unexposed.

Alternatively:

 The RISK of breast cancer is 2.2 greater in those exposed to passive smoke than in unexposed.

Comparison of the OR and RR

Fictive illness with low prevalence

	Cases (M+)	Controls (M-)	n
Exposed (E+)	2	98	100
non-exposed (E-)	1	99	100
Total	3	197	

$$RR = \frac{2/100}{1/100} = 2 \qquad OR = \frac{2/1}{98/99} = 2.02$$

Comparison of the OR and RR

Fictive illness with high prevalence

	Cases (M+)	Controls (M-)	n
Exposed (E+)	50	50	100
Non-exposed (E-)	25	75	100
Total	75	125	

$$RR = \frac{50 / 100}{25 / 100} = 2 \qquad OR = \frac{50 / 25}{50 / 75} = 3$$

Advantages of Case-Control Studies (1)

- Less expensive ...
- Require smaller sample sizes ...
- Shorter duration ... than prospective study
- Study multiple risk factors for 1 disease
- Easily reproduced in different populations by different investigators

Disadvantages of Case-Control Studies (1)

- Information about exposure is often obtained after the diagnosis is done
 - Example: diet, physical activity
- Dependent on the subject's memory, which may be affected by the disease

Disadvantages of Case-Control Studies (2)

- Population of origin for cases is difficult to define precisely.
 - Difficult to identify appropriate control group
- Does not provide estimate of risks and attributable risk