Methodological issues in the measurement of chronic disease

The importance of measurement error

- Measurement error is one of the main constraints on our ability to measure the frequency of chronic diseases and identify risk factors for them
- Is often not considered properly either in the planning of data collection or in the interpretation of published research

Measurement error - overview of the session

- Sources of error
- Validity and reliability and their assessment
- Influence of of measurement error on:
 - » Summary estimates
 - » Estimates of associations between two variables
 - » Controlling for confounding

Sources of Measurement Variation

- Subject
- > Observer
- > Environment
- Instrument/method of data collection
- > Assay/analysis

Validity and Reliability

• Validity - ability to hit the target

» An expression of the degree a measurement measures what it purports to measure (converse: measurement bias)

• Reliability - ability to hit the same spot

- The degree of stability exhibited when a measurement is repeated under identical conditions (converse: measurement imprecision)
- A reliable measure may biased and a valid measure imprecise

Assessment of and types of validity

- Face
- Content
- Consensual
- Construct
- Criterion
 - » Concurrent
 - » Predictive

Measurement of reliability

 Reliability is measured by performing two or more independent measurements and comparing the findings using an appropriate statistical test

Examples of approaches to the measurement of reliability

- Test-retest reliability within and between observers, subjects, machines, assays
- Random allocation of subjects to observers

Effects of measurement error

- On estimates of population parameters
 - » Bias e.g. estimate of population mean is wrong
 - » Imprecision e.g. estimate of population variance is wrong
- On identification of associations, such as between a chronic disease and possible risk factors - need to consider whether the error is related to, or independent of, the value of the other variable.

- Error related the error with respect to exposure (or disease) is dependent on the individual's disease (or exposure) status.
- Error unrelated the error with respect to exposure (or disease) is *independent* of the individual's disease (or exposure) status.

Effects of measurement error in identifying associations

- Unrelated error almost always tend towards the null value.
 - » Thus if an association is found it is likely to be stronger than measured.
- Related error can work towards the null value or to suggest an association when none is there

Bias and imprecision in the measurement of confounders

- Imprecision reduces the ability to control for the effects of a confounder
- Bias in the measurement of a confounder may distort an association between two variables towards or away from unity

Beware of claims of "independent" associations!

• Work through scenarios 1 to 3

In the measurement of any chronic disease or risk factor consider

• Sources of measurement error:

- » Subject/Observer/Instrument/Assay/ Environment
- » Validity and reliability
- The influence of bias and imprecision on:
 » Summary estimates for populations/groups

• The influence of bias and imprecision on:

- » Estimates of associations between two variables
 - the importance of knowing whether assessing whether the measurement error is related to the other variable
- » Estimates of associations while "controlling" for confounders - if independent relationships are claimed is this justified?

