Sperm retrieval for intra-cytoplasmic sperm injection in non-obstructive azoospermia

G. M. COLPI 1, G. PIEDIFERRO 1, F. NERVA 1, D. GIACCHETTA 1, E. M. COLPI 2, E. PIATTI 1

Surgical testicular sperm retrieval for intra-cytoplasmic sperm injection (ICSI) purposes is the only possibility of biological fathering in case of non-obstructive azoospermia (NOA). Successful retrieval only correlates with histology, not with FSH values or testicular volume. Concurrent AZFa and AZFb microdeletions predict unsuccessful recovery. Testicular sperm extraction (TESE) (mean of successful retrievals in literature: 52.7%) is the technique of choice; we had successful retrievals in 100% of cases of hypospermatogenesis with > 5 spermatids/tubule (spd/tub), 81.8% of cases of hypospermatogenesis with <4 spd/tub, 50% of cases of maturation arrest, and 25% of cases of histologically pure Sertoli cell-only syndrome. Microsurgical TESE (mTESE) has been reported to increase successful retrievals: from 16.7-45% for standard TESE to 42.9-63.6% for mTESE, depending on the distribution of testicular histology in the various case studies; from 9 to 14 cases out of 22, respectively, in the only study in which TESE and mTESE were performed simultaneously on the same testis. Improvements in biological procedures for TESE retrievals can increase positive findings. TeFNA does not appear to be indicated in NOA, both because of its low success rates - which, in practice, are only positive in hypospermatogenesis - and because it is unable to detect any carcinomas in situ. Previous surgery of left varicocele in NOA could increase the chances of subsequent recovery. ICSI from TESE has lower birth rates in NOA than in obstructive azoospermia (OA) (19% vs 28%). Abortion rates are significantly higher following ICSI from NOA (11.5%) than from OA (2.5%) (P=0.001). Therefore, the prognosticated fertility of a couple with an NOA male is quite lower than for a couple with an OA male.

Key words: Non obstructive azoospermia - TESE - Microsurgical TESE - TeFNA - ICSI - Testis.

Address reprint requests to: G. M. Colpi, Unità di Andrologia – Ospedale San Paolo, Via A. di Rudinì 8, 20142 Milano. E-mail: gmcolpi@yahoo.com
Centres based on the latter’s specific activities of excellence, and because the division between OA and NOA is often, de facto, a presumptive one, since it is made solely according to clinical criteria (testicular volume, clinical history data, plasma FSH etc.), and not on the basis of the only unquestionable diagnostic criterion, i.e., testicular histology. In addition, the documented existence of mixed forms with obstructive and non-obstructive components at the same time (either as normal spermatogenesis with seminal duct obstruction on one side and severe spermatogenic failure on the other side, or as seminal duct obstruction with concomitant moderate spermatogenic damage on both sides) may complicate the correct attribution of some cases to OA or NOA groups. Based on testicular histology, pure OA cases only account for 15% of the azoospermic subjects we have observed in the past 2 years.

Aetiopathogenesis and histology of non-obstructive azoospermia

Apart from genetic causes (such as Klinefelter’s syndrome and other chromosomal abnormalities, including Y microdeletions), whose prevalence is approximately 20%, NOA is due to maldescensus testis, complete and focal germ cell aplasia (either congenital or acquired), spermatogenic arrest, previous orchitis, systemic diseases, severe and long-standing varicocele, previous surgery damaging testicular vessels, testicular tumours, prolonged local exposure to heat, irradiation, drugs, toxics etc.

Testicular histology of NOA shows different degrees of spermatogenic alterations: complete tubular sclerosis; reduced-diameter tubules without any trace of germinal epithelium (pure Sertoli cell-only syndrome [SCOS]); patterns which are similar to the previously described one, but with residual focal spermatogenesis in rare, larger-calibre tubules (incomplete SCOS); complete or incomplete spermatocytic maturation arrests (i.e., with no or very rare spermatids and spermatocytes); complete or incomplete spermatid maturation arrests; hypospermatogenesis (decreased number of cells in all spermatogenic stages); and mixed patterns.

Considering the extreme variability of the above-mentioned spermatogenic alterations, classification of histology findings by means of score systems, preferably by means of Johnsen’s score, is strongly recommended. In 1997, Silber et al. argued that, in order for sperm to occur in ejaculate, an average of at least 4 mature spermatids per seminiferous tubule was needed (in case of normozoospermia or pure OA, there is an average of 17-35 per tubule). Therefore, in pure NOA, there are less than 4 mature spermatids per seminiferous tubule. This explains why, in cases of NOA (confirmed by repeated semen analyses), mature spermatids may nevertheless be frequently found in biological preparations from testicular tissue biopsy.

Contrary to Authors holding opposite views, but in much more dated studies, some believe that human spermatogenesis is randomly organised, and that any damages may therefore occur patchily, and not evenly. On this basis, in order to increase the chances of recovering sperm in NOA, many recommend that more than one testicular sampling should be performed.

Predictive markers of successful sperm retrieval

There is evidence that the chance of recovering testicular sperm in NOA correlates neither with FSH or testicular volume in isolation, nor with both determinations. Cross-data on age, infertility time, hormones (FSH, LH, testosterone, prolactin), and testicular volume reach a predictive sensitivity of 80.8%. Recently, a formula was proposed to calculate the chances of recovery (sensitivity: 71%; specificity: 71.4%) based on FSH, total testosterone (TT), and Inhibin B: C = [1 + exp (5.201 – 0.048 x FSH – 0.449 x TT – 0.021 x Inhibin B)](-1).

Conflicting views are reported on a possible predictive role of Inhibin B; however, as yet, there are no conclusive data.

Microdeletions of the AZFa and AZFb re-
Sperm retrieval techniques in non-obstructive azoospermia

TESE enables positive sperm retrieval in 28-77% of NOA cases documented by testicular histology (mean 52.7% by single TESE) (Table I 22-44), substantially according to a previous review:46 the variability of results is thought to be due to heterogeneity of histological patterns. With regard to multiple TESE, we found only 3 papers with testicular histological data:31, 34, 45 the mean value of successful retrievals was 52.5% (Table II 31, 34, 45). The only slight difference between this mean and the previously reported value with standard TESE can be explained by heterogeneity of histological data in considered case reports.

TESE shows excellent repeatability: in patients with successful sperm retrieval upon a first TESE, a second TESE repeated 3 months later (for ICSI with fresh sperm) yielded successful recovery in 75% of cases with single sampling, and in 94.7% with multiple samplings.34

With regard to the correlation between testicular histology and biological sperm recovery with TESE in NOA, Tournaye et al.47 reported successful retrieval in 100% of cases of hypospermatogenesis, 62% of cases of incomplete maturation arrest, 48% of cases of complete maturation arrest, 86% of cases of incomplete SCOS, and 19% of cases of complete SCOS. More recently, Seo et al.7 reported successful recoveries in 89.2% of cases of severe hypospermatogenesis, 62.5% of cases of maturation arrest, and 16.3% of cases of SCOS. Out of 92 TESEs - 59 of which (56.1%) with successful recovery -, Piediferro et al.43 reported successful recoveries in 100% of 22 cases of hypospermatogenesis > 5 spermatids/tubule (spd/tub), 75% of 8 cases of hypospermatogenesis with 4<spd/tub<5, 81.8% of 22 cases of hypospermatogenesis with <4 spd/tub, 50% of 12 maturation arrests, and 25% of 28 cases of histologically pure SCOS, underlining the probable importance - for the purpose of successful retrieval - of the search time employed by the biologist before issuing a negative report: prolonging this maximum time from 1 h to 4 h resulted

Table I — Successful retrievals with TESE.

<table>
<thead>
<tr>
<th>Authors</th>
<th>No. of TESE</th>
<th>Retrieval +</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kahraman et al. (1996)</td>
<td>29</td>
<td>14</td>
<td>48.2</td>
</tr>
<tr>
<td>Mulhall et al. (1997)</td>
<td>30</td>
<td>21</td>
<td>70</td>
</tr>
<tr>
<td>Schlegel et al. (1997)</td>
<td>16</td>
<td>10</td>
<td>62</td>
</tr>
<tr>
<td>Friedler et al. (1997)</td>
<td>37</td>
<td>16</td>
<td>45</td>
</tr>
<tr>
<td>Jesek et al. (1998)</td>
<td>64</td>
<td>49</td>
<td>77</td>
</tr>
<tr>
<td>Ostad et al. (1998)</td>
<td>81</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>Ezech et al. (1998)</td>
<td>35</td>
<td>22</td>
<td>63</td>
</tr>
<tr>
<td>Schulze et al. (1999)</td>
<td>250</td>
<td>157</td>
<td>62.8</td>
</tr>
<tr>
<td>Amer et al. (1999)</td>
<td>216</td>
<td>71</td>
<td>33.5</td>
</tr>
<tr>
<td>Ben-Yosef et al. (1999)</td>
<td>55</td>
<td>33</td>
<td>60</td>
</tr>
<tr>
<td>Su et al. (1999)</td>
<td>81</td>
<td>47</td>
<td>58</td>
</tr>
<tr>
<td>Ng et al. (2000)</td>
<td>26</td>
<td>12</td>
<td>46.2</td>
</tr>
<tr>
<td>Kitamura et al. (2000)</td>
<td>44</td>
<td>32</td>
<td>72.7</td>
</tr>
<tr>
<td>Friedler et al. (2002)</td>
<td>83</td>
<td>32</td>
<td>38</td>
</tr>
<tr>
<td>Damani et al. (2002)</td>
<td>23</td>
<td>15</td>
<td>65.2</td>
</tr>
<tr>
<td>Meseguer et al. (2003)</td>
<td>12</td>
<td>5</td>
<td>41.6</td>
</tr>
<tr>
<td>Negri et al. (2003)</td>
<td>107</td>
<td>53</td>
<td>49.5</td>
</tr>
<tr>
<td>Piediferro et al. (2004)</td>
<td>92</td>
<td>50</td>
<td>64.1</td>
</tr>
<tr>
<td>Kubota et al. (2005)</td>
<td>30</td>
<td>20</td>
<td>66.6</td>
</tr>
<tr>
<td>Total</td>
<td>1311</td>
<td>691</td>
<td>52.7</td>
</tr>
</tbody>
</table>

Table II — Successful retrievals with multiple TESE.

<table>
<thead>
<tr>
<th>Authors</th>
<th>No. of TESE</th>
<th>Retrieval +</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ostad et al. (1998)</td>
<td>81</td>
<td>47</td>
<td>58</td>
</tr>
<tr>
<td>Amer et al. (1999)</td>
<td>100</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>Hauser et al. (1998)</td>
<td>55</td>
<td>28</td>
<td>50.9</td>
</tr>
<tr>
<td>Total</td>
<td>236</td>
<td>124</td>
<td>52.5</td>
</tr>
</tbody>
</table>
in an increase in successful recoveries, from 2 out of 5 to 16 out of 17, respectively, in the more severe cases of hypospermatogenesis.

These data suggest that there are islands of spermatogenesis in testicular pulp even in worst-prognosis histological conditions, such as SCOS.

In an effort to increase the chances of finding islands of spermatogenesis in sampled tissue, Schlegel devised microsurgical TESE (mTESE), i.e. testicular pulp microdissection. By using an operating microscope, an attempt is made to identify larger-calibre and darker tubules, as well as tubules in the areas that are closer to vessels, and therefore better supplied with blood, i.e. more likely sites of residual spermatogenesis. This technique, involving book-like opening of the testis, allows the surgeon to perform multiple microsamplings of these tubules on the wide exposed pulp area - therefore in different areas and at different depths, thus making a sort of “testicular mapping”. Various authors reported increased success rates with mTESE versus TESE (Table III), while some compared the 2 techniques between 2 different NOA patient groups, others used TESE on one testis and mTESE on the contralateral one with comparable histology. Okubo et al. only performed mTESE when TESE had been unsuccessful, doubling the number of total successful retrievals. Conversely, Colpi et al. compared the 2 methods by performing both of them on the same testis. Schlegel underlined that, with this method, less testicular pulp is sacrificed (on average 9.4 mg vs 720 mg for standard TESE), thus reducing the (nevertheless low) risks of later endocrine deprivation in patients such as those with NOA, who usually have small testes. Moreover, the risk of vascular damage is reduced, and the postoperative period is substantially unaltered, and immediate and later complications are very low - even lower than with TESE. Dardash et al. reported no scrotal haematoma (requiring surgical drainage) and no testicular atrophy in 107 mTESEs vs 3.4% (3/119 haematomas and 1/119 atrophies) in TESEs (P<0.05). Out of 223 mTESE procedures performed, Colpi et al. (2005) found no complications (haematomas, testicular atrophy, orchialgia), and detected no notable parenchymal or vascularisation abnormalities upon ultrasound follow-up 3-6 months later (unpublished data).

In case of severe tubular damage, retrieval with TeFNA is very low. Data from patients whose testicular histology is available show that successful retrievals with TeFNA are achieved almost exclusively in hypospermatogenesis: in NOA subjects mainly suffering from hypospermatogenesis. In addition, some authors actually pre-select patients for possible subsequent TeFNA or TESE for ICSI purposes by subjecting them to prior diagnostic needle aspiration, aimed at establishing whether there is sperm or not, and based on which they give a diagnosis of the type of testicular damage. This, like all diagnoses based on cytologic preparations only, is not totally free from possible errors, since classification of spermatogenetic cells on smears from needle aspiration is reliable in the hands only of highly trained cytologists.

TABLE III.—Successful retrievals with TESE versus mTESE.

<table>
<thead>
<tr>
<th>Authors</th>
<th>TESE + (%)</th>
<th>mTESE + (%)</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlegel (1999)</td>
<td>45 17/27</td>
<td>63</td>
<td>+40%</td>
</tr>
<tr>
<td>Amer et al. (2000)</td>
<td>40 47/100</td>
<td>47</td>
<td>+56%</td>
</tr>
<tr>
<td>Colpi et al. (2001)</td>
<td>40 14/22</td>
<td>63.6</td>
<td>+55%</td>
</tr>
<tr>
<td>Okubo et al. (2002)</td>
<td>48 8/1</td>
<td>48</td>
<td>+100%</td>
</tr>
<tr>
<td>Okada et al. (2002)</td>
<td>44.6 24/74</td>
<td>42.9</td>
<td>+167%</td>
</tr>
<tr>
<td>Tsujimura et al. (2002)</td>
<td>35.1 24/56</td>
<td>42.9</td>
<td>+22%</td>
</tr>
</tbody>
</table>
In 2 papers in which NOA was controlled by histology, and TeFNA and TESE were performed on the same testis, TeFNA recovered sperm in 14% vs 63% and in 11% vs 43%, respectively. Moreover, Khadra et al. retrieved sperm by TeFNA from 45 (53.6%) out of 84 patients suffering from presumed NOA (not controlled by histology!); TESE, however, yielded successful retrievals in 28 out of the 39 TeFNA-negative subjects (+71%).

In an animal model (rat), TeFNA involves severe, progressive and irreversible damage of tubules along the needle’s path, and - especially if performed at several sites - causes extensive tubular atrophy; on the contrary, TESE causes localised cicatrical fibrosis, with decreased tubular volume and increased interstitial tissue in the adjacent parenchyma, but leaves the rest of the testis unharmed.

Carcinoma in situ of testis can be found in 1-5% of males with very severe semen anomalies, and particularly in those with NOA: therefore, since it is more difficult to detect them in cytological than in histological preparations, this is an additional reason to refer NOA cases to TESE surgery with simultaneous biopsy for histology, instead of using needle aspiration techniques only.

How to increase sperm retrieval rates in non-obstructive azoospermia

Aydos et al. reported that, in patients with normal FSH, retrieval rates improve following administration of pFSH: actually, results appear to be statistically better in subjects with hypospermatogenesis and focal spermatogenesis only, who show satisfactory results, already. These data have not been confirmed by any other studies yet.

There are increasingly frequent reports of sperm occurrence in ejaculate in NOA patients with varicocele following surgical treatment of the latter: this made it possible, sometimes, to perform ICSI with sperm from ejaculate, in some cases, even to use less invasive assisted reproductive procedures than ICSI, and, anecdotically, to obtain some spontaneous pregnancies (Table IV). In these patients, sperm occurred in ejaculate only if spermatids were found upon testicular biopsy: sperm occurrence does not correlate with age, hormone assays, testicular volume, and degree of varicocele, and is not durable, so that, under such circumstances, any semen samples with sperm should be cryopreserved. Sperm reoccurrence in ejaculate proves a varicocelectomy-induced improvement in spermatogenesis: therefore, in case of varicocele in NOA patients, this should be repaired, at least in order to increase the chances of subsequent successful surgical retrieval (testicular telomerase activity - a spermatid marker - is thought to have predictive value).

Some changes in biological work were reported to be able to increase successful retrieval rates: removed tissue digestion with type IV collagenase in order to better release gametes from the epithelial lattice of seminiferous tubules; use of a stereomicroscope.
Intracytoplasmatic sperm injection and non-obstructive azoospermia

Contrary to the early data reported in literature, ICSI performed with sperms retrieved from testes is currently acknowledged to yield poorer results in NOA patients than in OA patients.86-88

ICSI from TESE has lower birth rates in NOA than in OA (19% vs 28%).89 Abortion rates are significantly higher following ICSI from NOA (11.5%) than from OA (2.5%) (P=0.001).

The risk of genetic alterations is proportional to spermatogenic damage, and is higher in NOA than in severe OAT-syndrome.88

Therefore, at the beginning of their path towards ICSI - female factors being equal -, the prognosticated fertility of a couple with an NOA male is quite lower than for a couple with an OA male; as a matter of fact, the far lower chance of recovering sperm in NOA than in OA must preliminarily be added to the lower success rate of ICSI in NOA.

Conclusions

In order to - at least partially - reduce the handicap of an NOA couple versus an OA couple with respect to ICSI, it is necessary to:

1) Make a prior attempt to retrieve and, in case, cryopreserve sperm from testes in an NOA male, before subjecting his woman to ovarian stimulation and oocyte pick-up, especially in order to reduce the risk of having to use semen from a donor (which, by the way, is now forbidden by Italian law) because no homologous sperms were retrieved. For the time being, the results of ICSI with fresh sperm from TESE do not seem to show any significant differences from those obtained with cryopreserved sperm from TESE.85, 89, 91, 92

2) Have recourse to retrieval techniques offering the highest success rates (TESE or mTESE, instead of TeFNA).

3) Optimise biological work relating to search and cryopreservation of the sperm retrieved from testes, as well as thawing and checking their viability immediately before ICSI.

4) If an NOA patient also suffers from clinically relevant varicocele, he should undergo varicocele surgery some months before the attempt to retrieve testicular sperm - providing that his partner is not sufficiently old as to advise against any additional waiting period before ICSI, in order not to reduce the latter’s success rates.

Riassunto

Il recupero di spermatozoi per iniezione intracitoplasmatica di spermatozoi nelle azoospermie non ostruttive

Il recupero chirurgico di spermatozoi testicolari finalizzato all’iniezione intracitoplasmatica di sperma (intra-cytoplasmic sperm injection, ICSI) rappresenta l’unico possibilità di paternità biologica in caso di azoospermia non ostruttiva (non-obstructive azoospermia, NOA). La positività di un recupero corre solo con l’esame istologico, non con i valori di FSH o con il volume testicolare. Le microdelezioni contemporanee dell’AZFa e dell’AZFb predicono recupero negativo. La TESE (media dei recuperi positivi in letteratura: 52,7%) è la tecnica d’elezione: si sono avuti recuperi positivi nel 100% delle ipospermatogenesi con > 5 spermatidi/tubulo (spd/tub), nell’81,8% delle ipospermatogenesi con <1 spd/tub, nel 50% degli arresti maturativi e nel 25% delle sindromi a sole cellule di Sertoli pure all’istologia. Dalla letteratura si evince che la TESE microchirurgica (mTESE) sembra aumentare i recuperi positivi: dal 16,7-45% della TESE standard al 42,9-63,6% della mTESE, a seconda della distribuzione dell’istologia testicolare nelle varie casistiche studiate; rispettivamente da 9 a 14 casi su 22 nell’unico studio in cui TESE e mTESE sono state effettuate in contemporanea sullo stesso testicolo. Perfezionamenti delle procedure biologiche sui prelievi da TESE possono aumentare i recuperi positivi. La TeFNA non appare indicata nelle NOA, e per i suoi bassi tassi di successo, in pratica positivi solo nelle ipospermatogenesi, e perché incapace di detectare eventuali carcinoma in situ. La chirurgia preliminare di un coesistente varicocele sinistro in soggetti NOA potrebbe aumentare le probabilità di un successivo recupero. La ICSI da TESE ha nelle NOA tassi di gravidanza a termine più...
bassì che nelle azooospermie ostruttive (obstructive azooospermia, OA) (19% vs 28%). Il tasso di aborto è significativamente più elevato a seguito di ICSI con spermatozoi da NOA (11,5%) che da OA (2,5%) (P=0,001). Pertanto la prognosi di fertilità di una coppia con maschio OA risulta alquanto inferiore rispetto a una coppia con maschio OA.

Parole chiave: Azooospermia - Spermatozoi - Iniezione intracitoplasmatica di spermatozoi.

References

33. Schulze W, Thoms F, Knuth UA. Testicular sperm extraction: a single session is not sufficient to improve histological findings in testicular tissue. Hum Reprod 1999;14:82-96.

42. Tournaye H, Surgical sperm recovery for intracytoplasmic sperm injection: which method is to be preferred? Hum Reprod 1999;14 Suppl 1:71-81.

