
PRINCIPLES OF CANCER SCREENING

LEARNING OBJECTIVES

- Define the purpose of screening tests and name criteria for their use in populations
- Define terms used to evaluate screening test effectiveness
- Identify and define the types of bias characteristic of cancer screening studies
- Describe how the principles of evidence-based medicine apply to counseling individuals on cancer screening tests

WHAT IS CANCER SCREENING?

- A test performed on asymptomatic individuals that allows for early detection, therapeutic intervention, and decreased mortality from the disease
- Positive result on screening test often leads to further testing and possibly to diagnostic workup
- Considered a *secondary* preventive intervention

CRITERIA FOR USE OF A SCREENING TEST

- Significant burden of disease in population
- Preclinical stage is detectable and prevalent
- Early detection improves outcome (mortality) with acceptable morbidity
- Screening tests are acceptable to population, inexpensive, and relatively accurate
- Effective treatment available for detected disease

CHARACTERISTICS OF SCREENING TESTS

• Test effectiveness measured as

- **Sensitivity:** ability to confirm disease
- **Specificity:** ability to identify disease absence
- Clinical importance related to predictive ability
 - **Positive Predictive Value:** proportion testing positive who actually have the disease
 - **Negative Predictive Value:** proportion testing negative who do not have the disease

APPLICATION OF SCREENING TO POPULATIONS

The 2x2 Table describes screening test outcomes:

	Disease present	Disease absent
Positive	Group (a)	Group (b)
result	True Positive	False Positive
Negative	Group (c)	Group (d)
result	False Negative	True Negative

CHARACTERISTICS OF SCREENING TESTS 1) Sensitivity: proportion of those with disease who test positive in the screened group (a) (a) + (c)Disease Disease absent present Group (a) Group (b) Positive **True Positive False Positive** result Group (c) Group (d) Negative **False Negative True Negative** result

CHARACTERISTICS OF SCREENING TESTS

2) Specificity: proportion of those without disease who test negative in screened group

	<u>(d)</u> (b) + (d)	
	Disease present	Disease absent
Positive	Group (a)	Group (b)
result	True Positive	False Positive
Negative	Group (c)	Group (d)
result	False Negative	True Negative

THE IDEAL SITUATION--100% AGREEMENT

	Disease present n = 200	Disease absent n = 800
Positive	200	0
result	True positive	False positive
Negative	0	800
result	False negative	True negative

A MORE LIKELY OUTCOME

	Disease present	Disease absent
	n = 200	n = 800
Positive	170	30
result	True Positive	False Positive
Negative	30	770
result	False Negative	True Negative

SENSITIVITY AND SPECIFICITY

• Consequences of a False Positive

- Even 3-5% will be large on a population level
- Follow-up tests, cost, potential harm, anxiety
- Periodic screening increases lifetime risk
- Consequences of a False Negative
 - Even one person can have tragic implications
 - At best, a false sense of security
 - Might neglect future screening tests

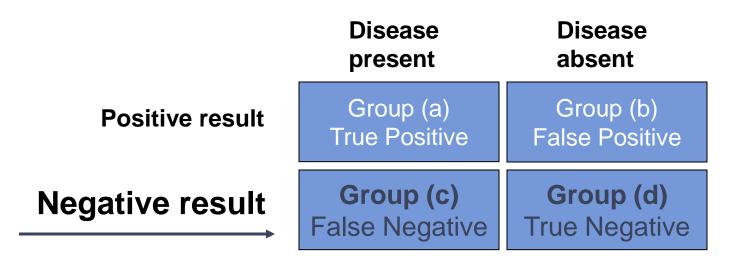
THE TRADEOFF: SENSITIVITY VS. SPECIFICITY


- If missing cancers is a concern, sensitivity can be raised by adjusting the diagnostic cut point for a positive result
- But, the false positive rate will also increase
- How will this affect screening program costs?
- Specificity may be the determining factor in the success of screening programs

UNDERSTANDING PREDICTIVE VALUES

- Clinician's perspective: If a test result is positive, how likely is it that this individual has the disease?
- Predictive value varies with the prevalence of the disease in the screened population.
- *Bayes' theorem*: As the prevalence of a disease increases, the positive predictive value of the test increases (PPV) and its negative predictive value (NPV) decreases.

CHARACTERISTICS OF SCREENING TESTS


3) Positive Predictive Value (PPV): The likelihood that a positive test result indicates the existence of the disease

CHARACTERISTICS OF SCREENING TESTS

4) Negative Predictive Value (NPV): The likelihood that a negative test result indicates the absence of the disease

 $\frac{(d)}{(c) + (d)}$

PREDICTIVE VALUES AND PREVALENCE

Sensitivity = ? ; Specificity = ?

Prevalence = ?	Disease Yes	Disease No	PPV
Positive result	99	495	
Negative result	1	9405	
Total	100	9900	?
Prevalence = ?			
Positive result	495	475	
Negative result	5	9025	
Total	500	9500	?

PREDICTIVE VALUES AND PREVALENCE

Sensitivity = 99%; Specificity = 95%

Prevalence = 1%	Disease Yes	Disease No	PPV
Positive result	99	495	
Negative result	1	9405	
Total	100	9900	17%
Prevalence = 5%			
Positive result	495	475	
Negative result	5	9025	
Total	500	9500	51%

EVALUATING A CANCER SCREENING TEST

- Goal is reduced mortality, not early case detection
- Survival is not an adequate surrogate endpoint
- Natural history of screen-detected cancers not identical to that of clinically detected cancers
- Effectiveness and morbidity of screening tests cannot be separated from subsequent treatments for the disease

EVALUATION OF SCREENING PROGRAMS

- Bias is any systematic error that affects the evaluation of screening test performance
- "Stage shift" biases
 - Lead time bias: screening advances the diagnosis of cancer and leads to longer survival, but no benefit in mortality reduction
 - **Length bias:** screening detects less aggressive cancers with long preclinical phases (and better prognoses)

EVALUATION OF SCREENING PROGRAMS

• Overdiagnosis bias

- Benign or indolent cancers are often detected
- Cancers diagnosed have malignant potential but not likely to cause death
- Selection bias: individuals who participate in screening trials are fundamentally different from those who do not
 - Randomized study design minimizes effect
 - "Healthy volunteer effect"

RISKS OF SCREENING

- The principle "do no harm" applies
- Risk often attached to follow-up testing
 - CRC screening—positive FOBT leads to risks of colonoscopy, including heavy blood loss and bowel perforation
 - Evaluation of the false positive—more harm than benefit to individuals?
- Treatment for any detected cancer will significantly affect quality of life

BARRIERS TO SCREENING

Patient barriers

- Social & cultural norms
- Psychological factors (fear and anxiety)
- Access to the health care system and insurance status
- Behavioral factors
- Perceptions of personal risk for disease
- Self-efficacy

BARRIERS TO SCREENING

Physician barriers

- Lack of time and competing priorities
- No reimbursement for counseling on preventive behaviors
- Mobile populations—documentation and follow up difficult
- Lack of professional consensus on benefits of some screening tests
- Organizational or systems problems

INDIVIDUALIZING THE SCREENING DECISION

• Patient must share in screening decision

- Informed consent essential
- Partners in health with the clinician
- Eliciting patient preferences is key
 - Incorporate patient's values, past experiences, and attitudes
 - Discuss barriers and problem solve
- Adherence to screening the goal

CONCLUDING COMMENTS

- Cancer screening tests require optimal performance characteristics for effective use in screening programs within populations.
- Understanding the scientific evidence for screening recommendations promotes best clinical care for individual patients.
- Preventive medicine requires the active participation of clinician and patient in a partnership for health.

