Epidemiologic Study Designs

Visanou HANSANA MD; MCTM

GFMER - WHO - UNFPA - LAO PDR Training Course in Reproductive Health Research Vientiane, 13 October 2009

Descriptive studies

Examine patterns of disease

Analytical studies

Studies of suspected causes of diseases

Experimental studies

Compare treatment modalities

Epidemiologic Study Designs

Hierarchy of Epidemiologic Study Design

Case reports

Case series

Ecologic studies

Cross-sectional studies

Case-control studies

Cohort studies

Randomized controlled trials

Generate hypotheses

Tower & Spector, 2007 (www)

Observational Studies

(no control over the circumstances)

- <u>Descriptive</u>: Most basic demographic studies
- <u>Analytical</u>: Comparative studies testing an hypothesis
 * cross-sectional
 - (a snapshot; no idea on cause-and-effect relationship)
 - * cohort
 - (prospective; cause-and-effect relationship can be inferred)
 - * case-control
 - (retrospective; cause-and-effect relationship can be inferred)

Epidemiologic Study Designs

Analytical Studies

(comparative studies testing an hypothesis)

* cohort (prospective)

Begins with an exposure (smokers and non-smokers)

* case-control (retrospective - trohoc)

Begins with outcome (cancer cases and healthy controls)

Cohort Studies

Examples of Cohort Studies

* Framingham Heart Study www

* NHANES Studies www

* MACS www

* Physicians' Health Study www

* Nurses' Health Study www

* ALSPAC www

Advantages of Cohort Studies

- Can establish population-based incidence
- Accurate relative risk (risk ratio) estimation
- Can examine rare exposures (asbestos > lung cancer)
- Temporal relationship can be inferred (prospective design)
- Time-to-event analysis is possible
- Can be used where randomization is not possible
- Magnitude of a risk factor's effect can be quantified
- Selection and information biases are decreased
- Multiple outcomes can be studied (smoking > lung cancer, COPD, larynx cancer)

Disadvantages of Cohort Studies

- Lengthy and expensive
- May require very large samples
- Not suitable for rare diseases
- Not suitable for diseases with long-latency
- Unexpected environmental changes may influence the association
- Nonresponse, migration and loss-to-follow-up biases
- Sampling, ascertainment and observer biases are still possible

Presentation of cohort data: Population at risk

Does HIV infection increase risk of developing TB among a population of drug users?

	Population (follow up 2 years)	Cases
HIV +	215	8
HIV -	289	1

Source: Selwyn et al., New York, 1989

Does HIV infection increase risk of developing TB among drug users?

Exposure	Population (f/u 2 years)	Cases	Incidence (%)	Relative Risk
HIV +	215	8	3.7	11
HIV -	298	1	0.3	

Presentation of cohort data: Person-years at risk

Tobacco smoking and lung cancer, England & Wales, 1951

	Person-years	Cases
Smoke	102,600	133
Do not smoke	e 42,800	3

Presentation of data: Various exposure levels

Daily number of cigarettes smoked	Person-years at risk	Lung cancer cases
> 25	25,100	57
15 - 24	38,900	54
1 - 14	38,600	22
none	42,800	3

Cohort study: Tobacco smoking and lung cancer, England & Wales, 1951

Cigarettes smoked/d	Person-years at risk	Cases	Rate per 1000 p-y	Rate ratio	
> 25	25,100	57	2.27	32.4	
15 - 24	38,900	54	1.39	19.8	
1 - 14	38,600	22	0.57	8.1	
none	42,800	3	0.07	Ref.	

Retrospective cohort studies

Cohort Studies

Figure 2: Schematic diagram of concurrent, retrospective, and ambidirectional cohort studies

Case-Control Studies

Case-Control Studies

Schulz & Grimes, 2002 (www) (PDF)

Advantages of Case-Control Studies

- Cheap, easy and quick studies
- Multiple exposures can be examined
- Rare diseases and diseases with long latency can be studied
- Suitable when randomization is unethical (alcohol and pregnancy outcome)

Disadvantages of Case-Control Studies

- Case and control selection troublesome
- Subject to bias (selection, recall, misclassification)
- Direct incidence estimation is not possible
- Temporal relationship is not clear
- Multiple outcomes cannot be studied
- If the incidence of exposure is high, it is difficult to show the difference between cases and controls
- Not easy to estimate attributable fraction
- Reverse causation is a problem in interpretation especially in molecular epidemiology studies

Case-Control Studies: Potential Bias

Panel 2: Introduction of bias through poor choice of controls

Cases	Control selection	Non-representativeness	Selection blas
Colorectal cancer patients	Patients admitted to hospital	Controls probably have high	Would spuriously reduce the
admitted to hospital	with arthritis	degrees of exposure to NSAIDs	estimate of effect (odds ratio)
Colorectal cancer patients	Patients admitted to hospital	Controls probably have low	Would spuriously Increase the estimate of effect (odds ratio)
admitted to hospital	with peptic ulcers	degrees of exposure to NSAIDs	

NSAIDs=non-steroidal anti-inflammatory drugs.

Schulz & Grimes, 2002 (www) (PDF)

Epidemiologic Association / Impact Measures

(Absolute Risk) (AR)

Relative Risk (Risk Ratio) (RR)

Odds Ratio (OR)

Measures of test accuracy:

Sensitivity, specificity, positive and negative predictive value (PPV, NPV)

Association Studies

Odds Ratio: 3.6 95% CI = 1.3 to 10.4

ROCHE Genetic Education (www)

Genotype	Type 1	Controls	Tota
HLA DR4	17	7	24
NON-HLA DR4	20	30	50
	37	37	

OR = ad / bc = 17*30 / 20*7 = 3.6 RR = (a/(a+c)) / (b/(b+d)) = (17/24)/(20/50) = 1.8

EBM toolbox (<u>www</u>) EpiMax Table Calculator (<u>www</u>)

Epidemiologic Study Designs

Sources of Error in Epidemiologic Studies

Random error

Bias

Confounding

Effect Modification

Reverse Causation

Sources of Error in Epidemiologic Studies

Random error

Large sample size, replication

Bias

Be careful

Confounding

Effect Modification

Reverse Causation

Confounding can be controlled by:

- Randomization: assures equal distribution of confounders between study and control groups
- Restriction: subjects are restricted by the levels of a known confounder
- Matching: potential confounding factors are kept equal between the study groups
- Stratification for various levels of potential confounders
- Multivariable analysis (does not control for effect modification)

Effect modification can be assessed by:

- Stratification for various levels of potential confounders
- Multivariable analysis (by assessing interaction)

Reverse causation can be assessed by:

- Mendelian Randomization

