Epidemiologic Study Designs

Visanou HANSANA
MD; MCTM

GFMER - WHO - UNFPA - LAO PDR
Training Course in Reproductive Health Research
Vientiane, 13 October 2009
Epidemiologic Study Designs

Experimental (RCTs)

Observational

Analytical

Descriptive

Case-Control

Cohort

+ cross-sectional & ecologic
Descriptive studies
Examine patterns of disease

Analytical studies
Studies of suspected causes of diseases

Experimental studies
Compare treatment modalities
Epidemiologic Study Designs

Grimes & Schulz, 2002
Hierarchy of Epidemiologic Study Design

Generate hypotheses

Establish causality

Case reports
Case series
Ecologic studies
Cross-sectional studies
Case-control studies
Cohort studies
Randomized controlled trials

Tower & Spector, 2007 (www)
Observational Studies
(no control over the circumstances)

- **Descriptive**: Most basic demographic studies

- **Analytical**: Comparative studies testing an hypothesis
 * cross-sectional
 (a snapshot; no idea on cause-and-effect relationship)
 * cohort
 (prospective; cause-and-effect relationship can be inferred)
 * case-control
 (retrospective; cause-and-effect relationship can be inferred)
Figure 2: Schematic diagram showing temporal direction of three study designs
Analytical Studies
(comparative studies testing an hypothesis)

* **cohort** (prospective)

 Begins with an exposure (smokers and non-smokers)

* **case-control** (retrospective - trohoc)

 Begins with outcome (cancer cases and healthy controls)
<table>
<thead>
<tr>
<th>Population</th>
<th>People without disease</th>
<th>Exposed</th>
<th>People without disease</th>
<th>Disease</th>
<th>No disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Not exposed</td>
<td></td>
<td>Disease</td>
<td>No disease</td>
</tr>
</tbody>
</table>
Examples of Cohort Studies

* Framingham Heart Study www
* NHANES Studies www
* MACS www
* Physicians' Health Study www
* Nurses' Health Study www
* ALSPAC www
Advantages of Cohort Studies

- Can establish population-based incidence
- Accurate relative risk (risk ratio) estimation
- Can examine rare exposures (asbestos > lung cancer)
- Temporal relationship can be inferred (prospective design)
- Time-to-event analysis is possible
- Can be used where randomization is not possible
- Magnitude of a risk factor’s effect can be quantified
- Selection and information biases are decreased
- Multiple outcomes can be studied (smoking > lung cancer, COPD, larynx cancer)
Disadvantages of Cohort Studies

- Lengthy and expensive
- May require very large samples
- Not suitable for rare diseases
- Not suitable for diseases with long-latency
- Unexpected environmental changes may influence the association
- Nonresponse, migration and loss-to-follow-up biases
- Sampling, ascertainment and observer biases are still possible
Presentation of cohort data:
Population at risk

Does HIV infection increase risk of developing TB among a population of drug users?

<table>
<thead>
<tr>
<th>Population (follow up 2 years)</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV +</td>
<td>215</td>
</tr>
<tr>
<td>HIV -</td>
<td>289</td>
</tr>
</tbody>
</table>

Source: Selwyn et al., New York, 1989
Does HIV infection increase risk of developing TB among drug users?

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Population (f/u 2 years)</th>
<th>Cases</th>
<th>Incidence (%)</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV +</td>
<td>215</td>
<td>8</td>
<td>3.7</td>
<td>11</td>
</tr>
<tr>
<td>HIV -</td>
<td>298</td>
<td>1</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

EPIET (www)
Presentation of cohort data: Person-years at risk

Tobacco smoking and lung cancer, England & Wales, 1951

<table>
<thead>
<tr>
<th>Person-years</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoke</td>
<td>102,600</td>
</tr>
<tr>
<td>Do not smoke</td>
<td>42,800</td>
</tr>
</tbody>
</table>

Source: Doll & Hill
Presentation of data: Various exposure levels

<table>
<thead>
<tr>
<th>Daily number of cigarettes smoked</th>
<th>Person-years at risk</th>
<th>Lung cancer cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 25</td>
<td>25,100</td>
<td>57</td>
</tr>
<tr>
<td>15 - 24</td>
<td>38,900</td>
<td>54</td>
</tr>
<tr>
<td>1 - 14</td>
<td>38,600</td>
<td>22</td>
</tr>
<tr>
<td>none</td>
<td>42,800</td>
<td>3</td>
</tr>
</tbody>
</table>
Cohort study: Tobacco smoking and lung cancer, England & Wales, 1951

<table>
<thead>
<tr>
<th>Cigarettes smoked/d</th>
<th>Person-years at risk</th>
<th>Cases</th>
<th>Rate per 1000 p-y</th>
<th>Rate ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 25</td>
<td>25,100</td>
<td>57</td>
<td>2.27</td>
<td>32.4</td>
</tr>
<tr>
<td>15 - 24</td>
<td>38,900</td>
<td>54</td>
<td>1.39</td>
<td>19.8</td>
</tr>
<tr>
<td>1 - 14</td>
<td>38,600</td>
<td>22</td>
<td>0.57</td>
<td>8.1</td>
</tr>
<tr>
<td>none</td>
<td>42,800</td>
<td>3</td>
<td>0.07</td>
<td>Ref.</td>
</tr>
</tbody>
</table>

Source: Doll & Hill
Prospective cohort study

Exposure

Study starts

Disease occurrence

EPIET (www)

Prospective cohort study

Study starts

Exposure

Disease occurrence

EPIET (www)
Retrospective cohort studies

Exposure → Disease occurrence → Study starts

(time)
Figure 2: Schematic diagram of concurrent, retrospective, and ambidirectional cohort studies
Case-Control Studies

Exposed
Not exposed

Exposed
Not exposed

Cases

Population

Exposed

Controls
Case-Control Studies

Schulz & Grimes, 2002 (www) (PDF)
Advantages of Case-Control Studies

- Cheap, easy and quick studies
- Multiple exposures can be examined
- Rare diseases and diseases with long latency can be studied
- Suitable when randomization is unethical (alcohol and pregnancy outcome)
Disadvantages of Case-Control Studies

- Case and control selection troublesome
- Subject to bias (selection, recall, misclassification)
- Direct incidence estimation is not possible
- Temporal relationship is not clear
- Multiple outcomes cannot be studied
- If the incidence of exposure is high, it is difficult to show the difference between cases and controls
- Not easy to estimate attributable fraction
- Reverse causation is a problem in interpretation - especially in molecular epidemiology studies
Case-Control Studies: Potential Bias

Panel 2: Introduction of bias through poor choice of controls

<table>
<thead>
<tr>
<th>Cases</th>
<th>Control selection</th>
<th>Non-representativeness</th>
<th>Selection bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorectal cancer patients admitted to hospital</td>
<td>Patients admitted to hospital with arthritis</td>
<td>Controls probably have high degrees of exposure to NSAIDs</td>
<td>Would spuriously reduce the estimate of effect (odds ratio)</td>
</tr>
<tr>
<td>Colorectal cancer patients admitted to hospital</td>
<td>Patients admitted to hospital with peptic ulcers</td>
<td>Controls probably have low degrees of exposure to NSAIDs</td>
<td>Would spuriously increase the estimate of effect (odds ratio)</td>
</tr>
</tbody>
</table>

NSAIDs = non-steroidal anti-inflammatory drugs.
Epidemiologic Association / Impact Measures

(Absolute Risk) (AR)
Relative Risk (Risk Ratio) (RR)
Odds Ratio (OR)

Measures of test accuracy:
Sensitivity, specificity, positive and negative predictive value (PPV, NPV)
Odds Ratio: 3.6
95% CI = 1.3 to 10.4

Association Studies

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Type 1</th>
<th>Controls</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA DR4</td>
<td>17</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>NON-HLA DR4</td>
<td>20</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
<td>37</td>
<td>74</td>
</tr>
</tbody>
</table>

\[X^2 = 5.377 \]

\[p < 0.025 \]

ROCHE Genetic Education (www)
OR = \frac{ad}{bc} = \frac{17 \times 30}{20 \times 7} = 3.6

RR = \frac{a}{(a+c)} \div \frac{b}{(b+d)} = \frac{17/24}{20/50} = 1.8

EBM toolbox (www)
EpiMax Table Calculator (www)
Epidemiologic Study Designs

Figure 3: Algorithm for distinguishing rates, proportions, and ratios
Sources of Error in Epidemiologic Studies

Random error
Bias
Confounding
Effect Modification
Reverse Causation
Sources of Error in Epidemiologic Studies

Random error

Large sample size, replication

Bias

Be careful

Confounding

Effect Modification

Reverse Causation
Confounding can be controlled by:

- **Randomization**: assures equal distribution of confounders between study and control groups

- **Restriction**: subjects are restricted by the levels of a known confounder

- **Matching**: potential confounding factors are kept equal between the study groups

- **Stratification** for various levels of potential confounders

- **Multivariable analysis** (does not control for effect modification)
Effect modification can be assessed by:
- **Stratification** for various levels of potential confounders
- **Multivariable analysis** (by assessing interaction)

Reverse causation can be assessed by:
- **Mendelian Randomization**
Thank you