Medical StaTISTICS

Mr. Kongmany Chaleunvong

GFMER - WHO - UNFPA - LAO PDR Training Course in Reproductive Health Research Vientiane, 22 October 2009

Why Medical Statistics?

- Medicine is a quantitative science but not exact
 - Not like physics or chemistry
- Statistics is about handling and quantifying variation and uncertainty
- Statistics is the field of science concerned with the collection, classification, summarising & interpretation of numerical data
- Biostatistics: application of statistical methods in biological sciences to deal with living things

Medical Statistics

Application of statistics in medicine

- To compare efficacy of a drug
- The % cured, relieved or died in experiment
- To find an association B/W 2 attributes
- In epidemiological studies

Variation

Variation characterises much of medicine

Humans differ in response to exposure to adverse effects

Example: not every smoker dies of lung cancer some non-smokers die of lung cancer

- Humans differ in response to treatment
 Example: penicillin does not cure all infections
- Humans differ in disease symptoms Example: sometimes cough and sometimes wheeze are presenting features for asthma

Probability

Thus:

Diagnosis and treatment are probabilistically based We talk of the *risks* due to exposure, the *chances* of cure, the *probability* that a patient has a disease

Data

- Quantitative : data with characteristics which have a magnitude or which can be measured.
 E.g.: height, weight, B.P., pulse rate, etc.
- Qualitative: data where the characteristics have no magnitude of size & which can't be measured. Do not possess numerical values.

E.g.: colour of hair, gender, blood group, etc.

Types of Data

- Discrete Data-limited number of choices
 - Binary: two choices (yes/no)
 - Dead or alive
 - Disease-free or not
 - Categorical: more than two choices, not ordered
 - Race
 - Age group
 - Ordinal: more than two choices, ordered
 - Stages of a cancer
 - Likert scale for response
 - E.g., strongly agree, agree, neither agree or disagree, etc.

Types of data

Continuous data

- Theoretically infinite possible values (within physiologic limits), including fractional values
 - Height, age, weight
- Can be interval
 - Interval between measures has meaning
 - Ratio of two interval data points has no meaning
 - Temperature in Celsius, day of the year)
- Can be ratio
 - Ratio of the measures has meaning
 - Weight, height

Types of Data

- Why important?
- The type of data defines:
 - The summary measures used
 - Mean, Standard deviation for continuous data
 - Proportions for discrete data
 - Statistics used for analysis:
 - Examples:
 - T-test for normally distributed continuous
 - Wilcoxon Rank Sum for non-normally distributed continuous

Dependency of the study outcome required special statistical methods to handle it

Back to the conclusion

Appropriate statistical methods

Descriptive Statistics

- Characterize data set
 - Graphical presentation
 - Histograms
 - Frequency distribution
 - Box and whiskers plot
 - Numeric description
 - Mean, median, SD, interquartile range

Sources of data collection

Experiments
 Surveys
 Records

Presentation of data

- Tabulation
- Diagrams

SAMPLING

- The process of selecting a representative part from the whole
- Sample: the representative part
- Population: the whole from which sample is drawn

Measures of central Tendency

A measurement that is used to describe the tendency of all the individual observations to be in the centre

- Mean
- MedianMode

Mean

Arithmetic average obtained by summing up all the observation & dividing the total by the No: of observations

$$Mean(\overline{X}) = \frac{\sum_{i=1}^{n} \chi_{i}}{n}$$

Eg: 7 subjects : 7, 5, 3, 4, 6, 4, 5

$$Mean = \frac{7+5+3+4+6+4+5}{7} = 4.86$$

Median

- The middle observation when all the observation are arranged in ascending or descending order
- E.g.: 7 subjects arranged in ascending order are, 3, 4, 4, 5, 5, 6,7

The 4th observation i.e. '5' is the median

Mode

Most frequently occurring observation in a series

E.g.: the size of induration in tuberculin test of 10 boys – 3, 5, 7, 7, 8, 8, 8, 10 ,11, 12 The mode here is '8'

Measures of variability

- Variability: biological data collected by measurement or counting are variable
- No 2 measurements in man are absolutely equal
- Measures of variability of observations help to find how individual observations are dispersed around the mean

Measures of variability

Range

Mean deviation

Standard deviation

Standard error

Range

- The normal limits of a biological characteristic
 - E.g.: systolic B.P. 100-140mm of Hg

Mean deviation

Mean of the absolute deviation from the central tendency

$$MD = \frac{\sum_{i=1}^{n} \left| \chi_{i} - \overline{X} \right|}{MD}$$

n

Mean deviation about mean

= sum of the absolute deviation from the mean / No: of observation

Standard deviation

 Square root of the average of the sum of the squares of deviations taken from the mean

$$SD = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{n-1}}$$

 Indicates whether the variation of difference of an individual from the mean is by chance or real

Standard error

- Difference between sample & population values
- Is a measure of chance variation

 $SE = SD / \sqrt{n}$

Touch the variability (uncertainty) to understand statistical inference

Touch the variability (uncertainty) to understand statistical inference

Measure of central tendency

Measure of variation

Same mean BUT different variation

id	Α
1	2
2	2
3	0
4	2
5	14
Sum (Σ)	20
Mean	<u> </u>
SD	5.66
Median	2
Heterogeneous data	

id	В	
1	4	
2	3	
3	5	
4	4	
5	4	
Sum (Σ)	20	
Mean	<u>4</u>	
SD	0.71	
Median	4	
Homogeneous data		

Facts about Variation

- Because of variability, repeated samples will NOT obtain the same statistic such as mean or proportion:
 - Statistics varies from study to study because of the role of chance
 - Hard to believe that the statistic is the parameter
 - Thus we need statistical inference to estimate the parameter based on the statistics obtained from a study
- Data varied widely = heterogeneous data
- Heterogeneous data requires large sample size to achieve a conclusive finding

Central Limit Theorem

Central Limit Theorem

Distribution of the sampling mean

Report and interpret p-value appropriately

- Example of over reliance on p-value:
 - Real results: n=5900; OR_{Drug A vs Drug B} = 1.02 (P<0.001)
 - Inappropriate: Quote p-value as < 0.05 or put * or **** (star) to indicate significant results
 - Wrong: Drug A is highly significantly better than Drug B (P<0.001)
 - What if 95%CI: 1.001 to 1.300?
 - This is no clinical meaningful at all....!

Report and interpret p-value appropriately

- Example of over reliance on p-value:
 - Real results: n=30; $OR_{Drug A vs Drug B} = 9.2$ (P=0.715)
 - Inappropriate: Quote p-value as > 0.05
 - Wrong: There is no statistical significant difference of the treatment effect (P<0.05). Thus Drug A is as effective as Drug B
 - What if 95%CI: 0.99 to 28.97?
 - This is study indicated a low power, NOT suggested an equivalence...!
 - Correct: There was no sufficient information to concluded that . . . => inconclusive findings

P-value is the magnitude of chance NOT magnitude of effect

- P-value < 0.05 = Significant findings
- Small chance of being wrong in rejecting the null hypothesis
- If in fact there is no [effect], it is unlikely to get the [effect] = [magnitude of effect] or more extreme
- Significance DOES NOT MEAN importance
- Any extra-large studies can give a very small P-value even if the [magnitude of effect] is very small

P-value is the magnitude of chance NOT magnitude of effect

- P-value > 0.05 = Non-significant findings
- High chance of being wrong in rejecting the null hypothesis
- If in fact there is no [effect], the [effect] = [magnitude of effect] or more extreme can be occurred chance
- Non-significance DOES NOT MEAN no difference, equal, or no association
- Any small studies can give a very large P-value even if the [magnitude of effect] is very large

P-value vs. 95%CI (1)

An example of a study with dichotomous outcome

A study compared cure rate between Drug A and Drug B

Setting: Drug A = Alternative treatment Drug B = Conventional treatment

Results: Drug A: n1 = 50, Pa = 80% Drug B: n2 = 50, Pb = 50%

Pa-Pb = 30% (95%CI: 26% to 34%; P=0.001)

P-value vs. 95%CI (2)

P-value vs. 95%CI (3)

Adapted from: Armitage, P. and Berry, G. Statistical methods in medical research. 3rd edition. Blackwell Scientific Publications, Oxford. 1994. page 99

P-value vs. 95%CI (4)

Adapted from: Armitage, P. and Berry, G. Statistical methods in medical research. 3rd edition. Blackwell Scientific Publications, Oxford. 1994. page 99

P-value vs. 95%CI (5)

Adapted from: Armitage, P. and Berry, G. Statistical methods in medical research. 3rd edition. Blackwell Scientific Publications, Oxford. 1994. page 99

P-value vs. 95%CI (4)

- Save tips:
 - Always report 95%CI with p-value, NOT report solely pvalue
 - Always interpret based on the lower or upper limit of the confidence interval, p-value can be an optional
 - Never interpret p-value > 0.05 as an indication of no difference or no association, only the CI can provide this message