

Analysis of data from case-control studies

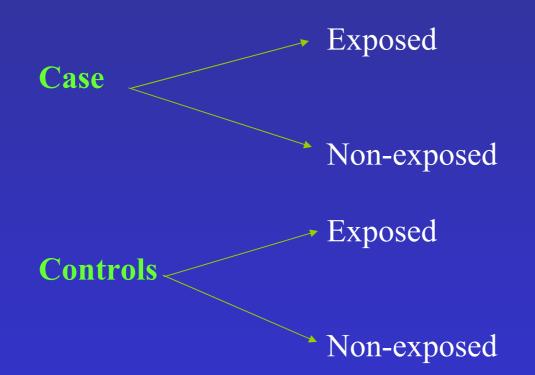
Isaac M. Malonza, MD, MPH

Department of Reproductive Health and Research World Health Organization

DEPARTMENT OF REPRODUCTIVE HEALTH AND RESEARCH

Objectives of this lecture

- Quick review of the design of case –control studies
- Calculating Odds ratios
- 95% confidence interval for Odds ratios
- Relationship between odds ratio and relative risk
- Interpretation of the odds ratio
- Analysis of data from matched case-control studies


Design of case-control studies

- Identify a group of individuals with the disease (cases)
- Select a group of individuals without the disease (controls)
- Determine the proportion of cases who were exposed and those that were not exposed
- Then do the same for control (exposed versus non-exposed)

Diagrammatic representation of a case-control study

DEPARTMENT OF REPRODUCTIVE HEALTH AND RESEARCH

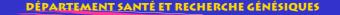
Summarising data from case-control studies using a 2 by 2 table

	Cases	Controls	Total
Exposed	А	В	(A+B) M ₁ =
Non- exposed	С	D	(C+D) M ₂ =
Total	A+C=N ₁	B+D=N ₂	M ₁₊ M ₂ =T

Proportion of cases exposed = A/(A+C)Proportion of controls exposed = B/(B+D)

If disease is associated with exposure, we expect the proportion of cases who are exposed to be higher than the proportion of controls who are exposed, i.e A/(A+C) greater than B/(B+D)

DEPARTMENT OF REPRODUCTIVE HEALTH AND RESEARCH



Hypothetical example: coronary heart disease (CHD) versus history of smoking

	CHD	Controls
Smoking	56	88
No smoking	44	112
Total	100	200
Proportions (exposed)	56%	44%

This implies that history of smoking may be associated with development of CHD.

	Odds ratio (1)				
Exposed Non-exposed	Cases A C	Controls B D			
	A+C	B+D			

- A divided by (A+C) is the probability that a case was exposed
- C divided by (A+C) is the probability that a case was not exposed
- A/(A+C) divided by C/(A+C) is a ratio of two probabilities which is called odds
- Odds of a case being exposed = A/(A+C) divided by C/(A+C) = A/C

• the **odds** of an event is defined as the ratio of the number of ways the event can occur to the number of ways the event cannot occur, i.e.

Odds = No. of ways event can occur No. of ways event cannot occur

- A/C is the odds that a case was exposed
- **B/D** is the odds that a control was exposed

Odds ratio (OR) = A/C divided by B/D = AD/BC

Definition: OR in **case-control** studies is defined as the ratio of the **odds that the cases were exposed to the odds that the controls were exposed**.

Odds ratio from cohort studies

- A divided by B is the odds that the exposed will develop disease
- C divided by D is the odds that the non-exposed will develop disease
- OR=A/B divided by C/D=AD/BC
- Therefore, AD/BC represents the odds ratio in both case-control and cohort studies,

 OR in a cohort studies is defined as the ratio of the odds that the exposed persons will develop disease to the odds that the non-exposed will develop the disease.

Recapitulate

• Note that **AD/BC** has a different meaning depending on whether its from a case-control or cohort study

• OR in case-control studies is defined as the ratio of the odds that the cases were exposed to the odds that the controls were exposed

OR in a **cohort studies** is defined as **the ratio of the odds that the exposed persons will develop disease to the odds that the non-exposed will develop the disease**

Interpreting the odds ratio

- If OR=1, the exposure is not related to the disease (no association)
- If OR>1, the exposure is positively related to the disease (possible causal)

If OR<1, the exposure is negatively related to the disease (possible protective)

Calculating OR from case-control studies

	CHD	Controls	
Smoking	56	88	
No smoking	44	112	

OR= (56 X 112) / (88 X 44) = 6272 / 3872 = 1.6 Indicating that smoking increases the odds of developing CHD

Suppose we rearrange the order of columns

	CHD	Controls			
No Smoking	44	112			
Smoking	56	88			
OR = (44 X 88) / (112 X 56) = 3872 / 6272 = 0.6					
Indicating that non-smoking reduces the odds of					
	developing C	HD			

	CHD	Controls			
Smoking	112	44			
No smoking	88	56			
OR=1.6, indicating the odds of not developing CHD are					
increased for non-smokers					

DÉPARTEMENT SANTÉ ET RECHERCHE GÉNÉSIQUES

Odds ratio from matched pairs case - control study

- Controls may be matched to each case according to a certain factor, e.g. age, sex, race
- Analysis is done for case-controls pairs, not by individual subjects
- What types of combinations are possible?
- Assume that exposure is **dichotomous** (either exposed or not exposed)
- Possibilities:
 - 1. Both cases and controls exposed
 - 2. Neither case nor control was exposed
 - 3. Case exposed, but control not exposed
 - 4. Control exposed, but case not exposed
- 1 and 2 are called **concordant** pairs
- 3 and 4 are discordant pairs

• we can summarise the data into a 2 X 2 table:

		Controls			
		Exposed	Not exposed		
Cases	Exposed	а	b		
	Not exposed	С	d		
	Note: a,	b, c, d, represe	ent pairs		

- concordant pairs (a and d) had the same exposure experience, therefore they cannot tell anything about the relationship between exposure and outcome
- calculation of OR is based on the discordant pairs, b and c
- OR=b/c
- Definition: OR in a matched case-control study is defined as the ratio of the number of pairs a case was exposed and the control was not to the number of ways the control was exposed and the case was not

Hypothetical example: matched case/control

Cases	Controls
E	Ν
E	E
Ν	Ν
E	Ν
Ν	E
Ν	Ν

Cases Exposed 1 2 Not 2 exposed 1 2

OR=2/1=2.0

AAM/case-controlstudies /16

Matched case/control study with R controls per case controls

cases	0	1	2	• • •	R
exposed			F ₁₂	•••	F _{1R}
Not exposed	F ₀₀	F ₀₁	F ₀₂	•••	F _{0R}

 F_{10} =no. of times the case is exposed and none of the controls are exposed F_{11} =no. of times the case is exposed and one of the controls are exposed M =total no. of exposed subjects in a matched set (0 = m = R+1)

 $OR_{MH} = \{R F_{1,0} + (R-1)F_{1,1} + (R-2) F_{1,2} + \dots + F_{1,R-1}\} / \{F_{0,1} + 2F_{0,2} + 3F_{0,3} + \dots + RF_{0,R}\}$

Example:

Previous history of induced abortion among women with ectopic pregnancy and matched controls

		(contro	s	
cases	0	1	2	3	4
Exposed	3	5	3	0	1
Not exposed	5	1	0	0	0

OR_{MH} ={4x3 + 3x5 +2x3 +1x0}/{1+2x0+3x0+4x0}=33/1=33

Calculating OR from data with continuos exposure

Daily cigarette consumption

	<5	5-14	15-24	25-49	50 +
Lung cancer	26	208	196	174	45
Controls	65	242	201	118	23
smoking	Lung	cancer	contro	ols	
5-14	208		242		
<5	26		65		
OR=2.1					

 We can therefore calculate OR for other smoking categories compared to <5 group

• We get a list of OR as shown in the next slide

DEPARTMENT OF REPRODUCTIVE HEALTH AND RESEARCH

Daily cigarette consumption

	<u><5</u>	5-14	15-24	25-49	<u>50+</u>
Lung cancer	26	208	196	174	45
Controls	<u>65</u>	242	201	118	<u>23</u>
OR	1	2.1	2.4	3.7	4.9

Smoking more that 5 cigarettes per day increases the odds of developing lung cancer

Suppose we had a continuous outcome, e.g. causes of death, then you have to calculate OR for each cause of death.

Calculating the 95% confidence interval for ORs

- Epidemiologic studies usually involve only a sample of the entire population
- However, the main interest is to use the sample to make conclusions about the entire population
- Question: how does the OR from the sample differ from that for the entire population?
- We would like to be 95% confident that the population OR lies within a certain range
- This range is referred to as the confidence interval (CI)

CI for the OR (Mantel and Haenszel, 19959, Miettinen, 1976): CI=OR (1±Z/x)

Where Z is the normal variate and x =square root of $\frac{(T-1) x (AD-BC)^2}{N_0 x N_1 x M_1 x M_0}$

Estimating the CI from "The Cancer and Steroid hormone study, 1987"

	Ovarian cancer	Controls	Total
OC use	250	2,696	2,946
NO OC	242	1,532	1,774
Total	492	4,228	4,720

Step 1: calculate the $X^2 = 4,719 \times (250 \times 1,532 - 242 \times 2,696) = 31.51$, X=5.61 2,696 x 1,532 x 250 x 242

Step 2: Lower limit: OR (1-Z/x), where Z is 1.96, =0.5

Step 3: Upper limit, OR (1+Z/x), =0.7

Controlling for confounding

Example of Education, cervical cancer and OC use:

<u>OC non use</u>	e <u>rs</u>		
Education	cancer	controls	
High	3	33	
Low	47	16	
Total	50	49	
%high	6%	67%	

All women		
Education	cancer	controls
High	8	75
Low	92	25
Total	100	100
<u>%high</u>	8%	75%

Conclusion: women with cervical cancer were more likely than controls to have 'low' level of education

Confounding (2)

High	OC	cases	controls	OR
	+	5	42	
	-	3	33	1.31
Low	OC	cases	controls	OR
	+	45	9	
	-	47	16	1.70
Total	OC	cases	controls	OR
	+	50	51	
	-	50	49	0.96

Standardized OR = $(5 \times 33)/83 + (45 \times 16)/117 = 1.59$ (42 x 3)/83 + (9 x 47)/117

Relationship between OR and RR

Relative risk = incidence in exposed/incidence in non-exposed
cannot measure RR directly from a case-control study

- OR is a good estimate of RR when:
- 1) the disease or event is rare
- 2) cases are representative of the all people with the disease with regard to exposure
- 3) controls are representative of all people without disease in the population

•Example:	cases	controls
exposed	200	9800
non exposed	100	9900

RR=(200/10,000)/(100/10,000) = 2.0 OR=2.02