Analysis of data from case-control studies

Isaac M. Malonza, MD, MPH

Department of Reproductive Health and Research World Health Organization

Objectives of this lecture

- Quick review of the design of case -control studies
- Calculating Odds ratios
- 95% confidence interval for Odds ratios
- Relationship between odds ratio and relative risk
- Interpretation of the odds ratio
- Analysis of data from matched case-control studies

Design of case-control studies

- Identify a group of individuals with the disease (cases)
- Select a group of individuals without the disease (controls)
- Determine the proportion of cases who were exposed and those that were not exposed
- Then do the same for control (exposed versus non-exposed)

Diagrammatic representation of a case-control study

Summarising data from case-control studies using a 2 by 2 table

	Cases	Controls	Total
Exposed	A	B	$(\mathrm{A}+\mathrm{B}) \mathrm{M}_{1}=$
Non- exposed	C	D	$(\mathrm{C}+\mathrm{D}) \mathbf{M}_{2}=$
Total	$\mathrm{A}+\mathrm{C}=\mathrm{N}_{1}$	$\mathrm{~B}+\mathrm{D}=\mathbf{N}_{2}$	$\mathrm{M}_{1+} \mathrm{M}_{2}=\mathrm{T}$

Proportion of cases exposed $=\mathrm{A} /(\mathrm{A}+\mathrm{C})$ Proportion of controls exposed $=B /(B+D)$

If disease is associated with exposure, we expect the proportion of cases who are exposed to be higher than the proportion of controls who are exposed, i.e
$A /(A+C)$ greater than $B /(B+D)$

Hypothetical example: coronary heart disease (CHD) versus history of smoking

CHD

Controls

Smoking	56	88
No smoking	44	112
Total	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$
Proportions (exposed)	$\mathbf{5 6 \%}$	$\mathbf{4 4} \%$

This implies that history of smoking may be associated with development of CHD.

Odds ratio (1)

Exposed Non-exposed

Cases Controls A B

$$
A+C \quad B+D
$$

- A divided by $(\mathrm{A}+\mathrm{C})$ is the probability that a case was exposed
- C divided by $(\mathrm{A}+\mathrm{C})$ is the probability that a case was not exposed
- $\mathrm{A} /(\mathrm{A}+\mathrm{C})$ divided by $\mathrm{C} /(\mathrm{A}+\mathrm{C})$ is a ratio of two probabilities which is called odds
- Odds of a case being exposed $=\mathrm{A} /(\mathrm{A}+\mathrm{C})$ divided by $\mathrm{C} /(\mathrm{A}+\mathrm{C})$ = A/C

Odds ratio (2)

- the odds of an event is defined as the ratio of the number of ways the event can occur to the number of ways the event cannot occur, i.e.

$$
\text { Odds }=\quad \frac{\text { No. of ways event can occur }}{\text { No. of ways event cannot occur }}
$$

- A / C is the odds that a case was exposed
- B / D is the odds that a control was exposed

$$
\text { Odds ratio }(\mathrm{OR})=\mathrm{A} / \mathrm{C} \text { divided by } \mathrm{B} / \mathrm{D}=\mathrm{AD} / \mathrm{BC}
$$

Definition: OR in case-control studies is defined as the ratio of the odds that the cases were exposed to the odds that the controls were exposed.

Odds ratio from cohort studies

- A divided by B is the odds that the exposed will develop disease
- C divided by D is the odds that the non- exposed will develop disease
- OR=A/B divided by C/D=AD/BC
- Therefore, AD/BC represents the odds ratio in both case-control and cohort studies,
- OR in a cohort studies is defined as the ratio of the odds that the exposed persons will develop disease to the odds that the non-exposed will develop the disease.

Recapitulate

- Note that AD/BC has a different meaning depending on whether its from a case-control or cohort study
- OR in case-control studies is defined as the ratio of the odds that the cases were exposed to the odds that the controls were exposed

OR in a cohort studies is defined as the ratio of the odds that the exposed persons will develop disease to the odds that the non-exposed will develop the disease

Interpreting the odds ratio

- If $\mathrm{OR}=1$, the exposure is not related to the disease (no association)
- If $\mathrm{OR}>1$, the exposure is positively related to the disease (possible causal)

If $\mathrm{OR}<1$, the exposure is negatively related to the disease (possible protective)

Calculating OR from case-control studies

CHD Controls

Smoking
No smoking
$56 \quad 88$
44
112
$\mathrm{OR}=(56 \mathrm{X} \mathrm{112}) /(88 \mathrm{X} 44)=6272 / 3872=1.6$
Indicating that smoking increases the odds of developing CHD

Suppose we rearrange the order of columns

CHD Controls

	CHD	Controls
Smoking	112	44
No smoking	88	56

$\mathrm{OR}=1.6$, indicating the odds of not developing CHD are increased for non-smokers

Odds ratio from matched pairs case - control study

- Controls may be matched to each case according to a certain factor, e.g. age, sex, race
- Analysis is done for case-controls pairs, not by individual subjects
- What types of combinations are possible?
- Assume that exposure is dichotomous (either exposed or not exposed)
- Possibilities:

1. Both cases and controls exposed
2. Neither case nor control was exposed
3. Case exposed, but control not exposed
4. Control exposed, but case not exposed

- 1 and 2 are called concordant pairs
- 3 and 4 are discordant pairs
- we can summarise the data into a 2×2 table:

Controls
Cases Exposed Not exposed

Exposed Not exposed
a
c
b
d

Note: a, b, c, d, represent pairs

- concordant pairs (a and d) had the same exposure experience, therefore they cannot tell anything about the relationship between exposure and outcome
- calculation of OR is based on the discordant pairs, b and c
- OR=b/c
- Definition: OR in a matched case-control study is defined as the ratio of the number of pairs a case was exposed and the control was not to the number of ways the control was exposed and the case was not

Hypothetical example: matched case/control

Cases	Controls
E	N
E	E
N	N
E	N
N	E
N	N

Controls
Exposed Not exposed
Exposed
1
2
Not
exposed

Controls	
Exposed	Not exposed
1	2
1	2

$O R=2 / 1=2.0$ controls per case controls

cases	0	1	2	\ldots	R
exposed	\mathbf{F}_{10}	\mathbf{F}_{11}	\mathbf{F}_{12}	\ldots	$\mathbf{F}_{1 \mathrm{R}}$
Not exposed	\mathbf{F}_{00}	\mathbf{F}_{01}	\mathbf{F}_{02}	\ldots	$\mathbf{F}_{0 \mathrm{R}}$

$\mathrm{F}_{10}=$ no. of times the case is exposed and none of the controls are exposed
$\mathrm{F}_{11}=$ no. of times the case is exposed and one of the controls are exposed
$\mathrm{M}=$ total no. of exposed subjects in a matched set $(0=m=$ R+1)
$\mathrm{OR}_{\mathrm{MH}}=$
$\left\{R F_{1,0}+(R-1) F_{1,1}+(R-2) F_{1,2}+\ldots+F_{1, R-1}\right\} /\left\{F_{0,1}+2 F_{0,2}+\right.$ $3 \mathrm{~F}_{0,3}+\ldots+\mathrm{RF}_{0, \mathrm{R}}$

Example:

Previous history of induced abortion among women with ectopic pregnancy and matched controlscases0234
Exposed 3 $5 \quad 3$
0 1Notexposed

5	1	0	0	0

$$
\begin{aligned}
& \mathrm{OR}_{M H}=\{4 \times 3+3 \times 5+2 \times 3 \\
& +1 \times 0\} /\{1+2 \times 0+3 \times 0+4 \times 0\}=33 / 1=33
\end{aligned}
$$

Calculating OR from data with continuos exposure

Daily cigarette consumption

<5	$5-14$	$15-24$	$25-49$	$50+$

$\begin{array}{llllll}\text { Lung cancer } 26 & 208 & 196 & 174 & 45\end{array}$

smoking	Lung cancer	controls
$5-14$	208	242
<5	26	65

$\mathrm{OR}=2.1$

- We can therefore calculate OR for other smoking categories compared to <5 group
- We get a list of OR as shown in the next slide

Daily cigarette consumption

	<5	$5-14$	$15-24$	$25-49$	$50+$
Lung cancer	26	208	196	174	45
Controls	65	242	201	118	23
OR	1	2.1	2.4	3.7	4.9

Smoking more that 5 cigarettes per day increases the odds of developing lung cancer

Suppose we had a continuous outcome, e.g. causes of death, then you have to calculate OR for each cause of death.

Calculating the 95\% confidence interval for ORs

- Epidemiologic studies usually involve only a sample of the entire population
- However, the main interest is to use the sample to make conclusions about the entire population
- Question: how does the OR from the sample differ from that for the entire population?
- We would like to be 95% confident that the population OR lies within a certain range
- This range is referred to as the confidence interval (CI)

CI for the OR (Mantel and Haenszel, 19959, Miettinen, 1976): CI=OR ${ }^{(1 \pm Z / x)}$
Where \mathbf{Z} is the normal variate and $\mathbf{x}=$ square root of $\frac{(T-1) \times(\mathbf{A D}-\mathrm{BC})^{2}}{\mathrm{~N}_{0} \times \mathrm{N}_{1} \times \mathbf{M}_{1} \times \mathbf{M}_{0}}$

Estimating the CI from "The Cancer and Steroid hormone study, 1987"

	Ovarian cancer	Controls	Total
OC use	250	2,696	$\mathbf{2 , 9 4 6}$
NO OC	242	1,532	$\mathbf{1 , 7 7 4}$
Total	$\mathbf{4 9 2}$	$\mathbf{4 , 2 2 8}$	$\mathbf{4 , 7 2 0}$

Step 1: calculate the $\mathrm{X}^{2}=4.719 \times(250 \times 1,532-242 \times 2.696)=31.51, \quad \mathrm{X}=5.61$ $2,696 \times 1,532 \times 250 \times 242$

Step 2: Lower limit: OR ${ }^{(1-Z / x)}$, where Z is $1.96,=0.5$
Step 3: Upper limit, OR ${ }^{(1+Z / x)},=0.7$

Controlling for confounding

Example of Education, cervical cancer and OC use:
OC non users

Education	cancer	controls
High	3	33
Low	47	16
Total	50	49
\%high	6%	67%

All women

Education	cancer	controls
High	8	75
Low	92	25
Total	100	100
\%high	8%	75%

Conclusion: women with cervical cancer were more likely than controls to have 'low' level of education

Confounding (2)

High	OC	cases	controls	OR
	+	5	42	
	-	3	33	1.31
Low	OC	cases	controls	OR
	+	45	9	
	-	47	16	1.70
Total	OC	cases	controls	OR
	+	50	51	
	-	50	49	0.96

Standardized OR $=(5 \times 33) / 83+(45 \times 16) / 117=1.59$
$(42 \times 3) / 83+(9 \times 47) / 117$

Relationship between $O R$ and $R R$

- Relative risk = incidence in exposed/incidence in non-exposed -cannot measure RR directly from a case-control study
- OR is a good estimate of RR when:
1)the disease or event is rare

2) cases are representative of the all people with the disease with regard to exposure
3) controls are representative of all people without disease in the population

-Example:	cases	controls
exposed	200	9800
non exposed	100	9900

$\mathrm{RR}=(200 / 10,000) /(100 / 10,000)=2.0$
$\mathrm{OR}=2.02$

