Case-control studies

Alfredo Morabia

Division d’épidémiologie Clinique, Département de médecine communautaire, HUG
Alfredo.Morabia@hcuge.ch
www.epidemiologie.ch
Outline

- Case-control study
- Relation to cohort study
- Selection of controls
- Sampling schemes of controls
1. Example: Passive Smoking & Breast Cancer

<table>
<thead>
<tr>
<th>Smoking</th>
<th>Cases</th>
<th>Controls</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unexposed</td>
<td>40</td>
<td>234</td>
<td>1.0</td>
</tr>
<tr>
<td>Passive</td>
<td>140</td>
<td>370</td>
<td>2.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Smoking</th>
<th>Cases</th>
<th>Controls</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unexposed</td>
<td>40</td>
<td>234</td>
<td>1.0</td>
</tr>
<tr>
<td>Passive</td>
<td>140</td>
<td>370</td>
<td>2.2</td>
</tr>
</tbody>
</table>
Case-Control Design

SAMPLE

BC Cases
- Passive Smokers: 140
- Non-exposed: 40

Controls
- Passive Smokers: 370
- Non-exposed: 234
Presence or absence of disease ...

... is fixed by design in case-control studies.

- Cases have the disease
- Controls don’t.
- We can NOT compute a risk of disease
- We CAN compute prevalence of exposure in cases and controls
Passive Smoking & Breast Cancer

- **Cases:** all incident breast cancer in Geneva
- **Controls:** random sample of the Geneva female population
- **Exposure:** questionnaire on lifetime history of exposure to passive smoke
Have you ever been exposed?

- ... to passive smoking at least 1 hour per day for at least 1 year? (Yes / No)

- At home? At work? During leisure time?

- If yes, describe each episode of exposure
 - Duration, who, size of the room, etc...

- Unexposed = never active, never passive
What should be always true for a case-control study?

1. Cases and controls are randomized with respect to exposure.
2. Cases are a representative sample of all cases in the general population.
3. Controls are a representative sample of the general population.
4. Cases and controls have the same population of origin.
5. Always start with some cases, then identify their valid controls.
Fundamental conditions for the validity of this case-control design

Cases and controls:
- Originate from Geneva resident, <75 y.
- are sampled independently of their exposure to passive smoke

Solution:
- All incident cases over a given time period
- Controls are a random sample of population
Case Definition

- Incident (= newly diagnosed)
- Between 1/1/92 and 12/31/93
- Resident of Geneva
- Aged < 75 yrs
- Identified: all pathology labs of Geneva
Control Definition

- Never diagnosed with breast cancer
- Between 1/1/92 and 12/31/93
- Resident of Geneva
- Aged < 75 yrs
- Stratified random sample
 - Population controls
 - Why not use hospital controls?
Prevalence of Passive Smoking

<table>
<thead>
<tr>
<th>Smoking</th>
<th>Cases n</th>
<th>Controls n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unexposed</td>
<td>40</td>
<td>234</td>
</tr>
<tr>
<td>Passive</td>
<td>140</td>
<td>370</td>
</tr>
</tbody>
</table>
The proportion of passive smoker cases is...

1. \(\frac{40}{234} \)

2. \(\frac{140}{40} \)

3. \(\frac{140}{180} \)

4. \(\frac{370}{234} \)

5. \(\frac{370}{604} \)
Prevalence of Passive Smoking

<table>
<thead>
<tr>
<th>Smoking</th>
<th>Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Unexposed</td>
<td>40</td>
<td>22.2</td>
</tr>
<tr>
<td>Passive</td>
<td>140</td>
<td>77.8</td>
</tr>
</tbody>
</table>
Prevalence of Passive Smoking

<table>
<thead>
<tr>
<th>Smoking</th>
<th>Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Unexposed</td>
<td>40</td>
<td>22.2</td>
</tr>
<tr>
<td>Passive</td>
<td>140</td>
<td>77.8</td>
</tr>
</tbody>
</table>
The odds of passive smoking in CASES is...

1. \(\frac{140}{40} = 3.5 \)
2. \(\frac{77.8}{22.2} = 3.5 \)
3. \(\frac{140}{180} = 77.8 \)
4. \(\frac{140}{77.8} = 1.8 \)

5. Answers 1 or 2
Odds of Passive Smoking in CASES

<table>
<thead>
<tr>
<th>Smoking history</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unexposed</td>
<td>40</td>
<td>22.2</td>
</tr>
<tr>
<td>Passive</td>
<td>140</td>
<td>77.8</td>
</tr>
<tr>
<td>Total</td>
<td>180</td>
<td>100.0</td>
</tr>
</tbody>
</table>

\[
\text{Odds} = \frac{140}{40} = \frac{77.8}{22.2} = 3.5
\]

\[
\text{Odds} = 3.5
\]

March 5, 2003
Odds of Passive Smoking in CONTROLS

<table>
<thead>
<tr>
<th>Smoking history</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unexposed</td>
<td>234</td>
<td>38.7</td>
</tr>
<tr>
<td>Passive</td>
<td>370</td>
<td>61.3</td>
</tr>
<tr>
<td>Total</td>
<td>604</td>
<td>100.0</td>
</tr>
</tbody>
</table>

\[
\text{Odds} = \frac{370}{234} = 1.613 \\
\text{Odds} = \frac{61.3}{38.7} = 1.616
\]
AR in case-control study?

Recall

$$\text{AR}_{\text{duration}} = \text{Risk (E+)} - \text{R(E-)}$$

Since risk cannot be computed directly from a case-control study, AR cannot be computed either.
RR in case-control study?

RR = Risk (E+) / R(E-)

Since risk cannot be computed directly from a case-control study, RR cannot be computed either.
Odds Ratio of Passive Smoking

<table>
<thead>
<tr>
<th>Group</th>
<th>Odds</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>3.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Controls</td>
<td>1.6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

\[
\text{Odds Ratio} = \frac{3.5}{1.6} = 2.2
\]

Reference Group
Interpretation of the Odds Ratio (1)

- The odds of being a passive smoker are 2.2 greater in breast cancer cases than in population controls.

Alternatively:

- The odds of breast cancer is 2.2 greater in those exposed to passive smoke than in unexposed.

 WHY ?
Case-Control Design

SAMPLE

<table>
<thead>
<tr>
<th></th>
<th>BC Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive Smokers</td>
<td>140</td>
<td>370</td>
</tr>
<tr>
<td>Non-exposed</td>
<td>40</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>604</td>
</tr>
</tbody>
</table>
Imagine ...

you could have done the perfect cohort study instead of the case-control study
Cohort Design (Risk period: 2 yrs)

Female Population of Geneva

Passive Smokers
- 55,500
 - Breast Cancer: 140
 - No Breast Cancer: 55,360

Non-exposed
- 35,100
 - Breast Cancer: 40
 - No Breast Cancer: 35,060
Odds Ratio of Breast Cancer

<table>
<thead>
<tr>
<th>Breast Cancer</th>
<th>Passive Smokers</th>
<th>Unexposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present (A)</td>
<td>140</td>
<td>40</td>
</tr>
<tr>
<td>Absent (B)</td>
<td>55,360</td>
<td>35,060</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Odds (A/B)</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00253</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>0.00114</td>
<td>1.0 (ref)</td>
</tr>
</tbody>
</table>
Identity of Odds Ratio

- **Case-control study:**
 - Odds ratio of passive smoking = 2.2

- **Cohort study:**
 - Odds ratio of breast cancer = 2.2
 - Same interpretation

- **Identical Odds Ratio in the cohort and in the case-control studies.**
Female Population of Geneva

Passive Smokers

Breast Cancer: 140
No Breast Cancer: 55,360

Non-exposed

Breast Cancer: 40
No Breast Cancer: 35,060

Passive Smokers: 55,500
Non-exposed: 35,100

F1 = 1.0
F2 = 0.005
F3 = 1.0
F4 = 0.005

Breast Cancer: 180
Passive Smokers: 140
Non-exposed: 40

Controls: 604
Passive Smokers: 370
Non-exposed: 234

F_n = fraction included into the sample
Relation of Case-Control to Cohort Studies

- In a case-control study:
 - **CASES** are sampled among people in the unexposed and passive smokers cohorts who did develop breast cancer
 - **CONTROLS** are sampled among people in the unexposed and passive smokers cohorts who did not develop breast cancer
Odds Ratio and Relative Risk

- Relative Risk \[\frac{140}{55,500} \div \frac{40}{35,100} = 2.2 \]

Note effect of rare disease on denominators

- Odds Ratio \[\frac{140}{55,360} \div \frac{40}{35,060} = 2.2 \]
Interpretation of the Odds Ratio (2)

- The **ODDS** of breast cancer is 2.2 greater in those exposed to passive smoke than in unexposed.

Alternatively:

- The **RISK** of breast cancer is 2.2 greater in those exposed to passive smoke than in unexposed.
Advantages of Case-Control Studies (1)

- Less expensive ...
- Require smaller sample sizes ...
- Shorter duration ... than prospective study
- Study multiple risk factors for 1 disease
- Easily reproduced in different populations by different investigators
Disadvantages of Case-Control Studies (1)

- Information about exposure is often obtained after the diagnosis is done
 - Example: diet, physical activity

- Dependent on the subject’s memory, which may be affected by the disease
Disadvantages of Case-Control Studies (2)

- Population of origin for cases is difficult to define precisely.
 - Difficult to identify appropriate control group
- Does not provide estimate of risks and attributable risk