## **Case-control studies**

#### **Alfredo Morabia**

Division d'épidémiologie Clinique, Département de médecine communautaire, HUG Alfredo.Morabia@hcuge.ch www.epidemiologie.ch

## Outline

- Case-control study
- Relation to cohort study
- Selection of controls
- Sampling schemes of controls

#### 1. Example: Passive Smoking & Breast Cancer

|           | Cases |      |     |      |       |
|-----------|-------|------|-----|------|-------|
| Smoking   | n     | %    | n   | %    | Ratio |
| Unexposed | 40    | 22.2 | 234 | 38.7 | 1.0   |
| Passive   | 140   | 77.8 | 370 | 61.3 | 2.2   |



## Presence or absence of disease ...

... is fixed by design in case-control studies.

- Cases have the disease
- Controls don't.
- We can NOT compute a risk of disease
- We CAN compute prevalence of exposure in cases and controls

### **Passive Smoking & Breast Cancer**

- Cases: all incident breast cancer in Geneva
- Controls: random sample of the Geneva female population
- Exposure: questionnaire on lifetime history of exposure to passive smoke

## Have you ever been exposed?

- to passive smoking at least 1 hour per day for at least 1 year? (Yes / No)
- At home ? At work ? During leisure time ?
- If yes, describe each episode of exposure
   Duration, who, size of the room, etc...
  - Unexposed = never active, never passive

## What should be always true for a case-control study?

- 1. Cases and controls are randomized with respect to exposure.
- 2. Cases are a representative sample of all cases in the general population
- 3. Controls are a representative sample of the general population
- 4. Cases and controls have the same population of origin
- 5. Always start with some cases, then identify their valid controls

## Fundamental conditions for the validity of this case-control design

Cases and controls :

- Originate from Geneva resident, <75 y.</li>
- are sampled independently of their exposure to passive smoke

#### **Solution:**

- All incident cases over a given time period
- Controls are a random sample of population

## **Case Definition**

- Incident (= newly diagnosed)
- Between 1/1/92 and 12/31/93
- Resident of Geneva
- Aged < 75 yrs</p>
- Identified: all pathology labs of Geneva

## **Control Definition**

- Never diagnosed with breast cancer
- Between 1/1/92 and 12/31/93
- Resident of Geneva
- Aged < 75 yrs</p>
- Stratified random sample
  - Population controls
    - Why not use hospital controls?

## **Prevalence of Passive Smoking**

|           | Cases | Controls |
|-----------|-------|----------|
| Smoking   | n     | n        |
| Unexposed | 40    | 234      |
| Passive   | 140   | 370      |

#### The proportion of passive smoker cases is...



## **Prevalence of Passive Smoking**

|           | Cases |      | Controls |      |
|-----------|-------|------|----------|------|
| Smoking   | n     | %    | n        | %    |
| Unexposed | 40    | 22.2 | 234      | 38.7 |
| Passive   | 140   | 77.8 | 370      | 61.3 |

## **Prevalence of Passive Smoking**

|           | Cases |      | Controls |      |
|-----------|-------|------|----------|------|
| Smoking   | n     | %    | n        | %    |
| Unexposed | 40    | 22.2 | 234      | 38.7 |
| Passive   | 140   | 77.8 | 370      | 61.3 |

# The odds of passive smoking in CASES is...

 $\left| 1. \begin{pmatrix} 140 \\ 40 \end{pmatrix} \right| = 3.5 \quad 3. \begin{pmatrix} 140 \\ 180 \end{pmatrix} = 77.8$ 

 $2.\left(\frac{77.8}{22.2}\right) = 3.5 \quad 4.\left(\frac{140}{77.8}\right) = 1.8$ 

5. Answers 1 or 2

## Odds of Passive Smoking in CASES

| Smoking history | Ν       | %          |
|-----------------|---------|------------|
| Unexposed       | 40      | 22.2       |
| Passive         | 140     | 77.8       |
| Total           | 180     | 100.0      |
| Odds =          | 140/40= | 77.8/22.2= |
| Odds =          | 3.5     | 3.5        |

#### Odds of Passive Smoking in CONTROLS

| Smoking history | Ν        | º/o        |
|-----------------|----------|------------|
| Unexposed       | 234      | 38.7       |
| Passive         | 370      | 61.3       |
| Total           | 604      | 100.0      |
| Odds =          | 370/234= | 61.3/38.7= |
| Odds =          | 1.6      | 1.6        |

## **AR in case-control study?**

#### Recall

#### $AR_{duration} = Risk (E+) - R(E-)$

Since risk cannot be computed directly from a casecontrol study, AR cannot be computed either.

## **RR in case-control study?**

## RR = Risk(E+) / R(E-)

Since risk cannot be computed directly from a case-control study, RR cannot be computed either





## Interpretation of the Odds Ratio (1)

 The odds of being a passive smoker are 2.2 greater in breast cancer cases than in population controls.

#### **Alternatively:**

 The odds of breast cancer is 2.2 greater in those exposed to passive smoke than in unexposed.





#### WHO- Postgraduate course 2003 – CC studies



## Imagine ...

you could have done the perfect cohort study instead of the case-control study



## **Odds Ratio of Breast Cancer**

| <b>Breast Cancer</b> | Passive<br>Smokers | Unexposed |
|----------------------|--------------------|-----------|
| Present (A)          | 140                | 40        |
| Absent (B)           | 55,360             | 35,060    |
| Odds (A/B)           | 0.00253            | 0.00114   |
| <b>Odds Ratio</b>    | 2.2                | 1.0 (ref) |

## **Identity of Odds Ratio**

. . . . . . . .

- Case-control study:
  - Odds ratio of passive smoking = 2.2
- Cohort study:
  - Odds ratio of breast cancer = 2.2
    - Same interpretation

 Identical Odds Ratio in the cohort and in the case-control studies.



 $F_n$  = fraction included into the sample

#### **Relation of Case-Control to Cohort Studies**

- In a case-control study:
  - CASES are sampled among people in the unexposed and passive smokers cohorts who did develop breast cancer
  - CONTROLS are sampled among people in the unexposed and passive smokers cohorts who did **not** develop breast cancer

## **Odds Ratio and Relative Risk**

• Relative Risk = 
$$\begin{pmatrix} \frac{140}{55,500} \\ \frac{40}{35,100} \end{pmatrix} = 2.2$$

Note effect of rare disease on denominators

Odds Ratio

$$\left( \frac{\frac{140}{55,360}}{\frac{40}{35,060}} \right)$$

= 2.2

## Interpretation of the Odds Ratio (2)

 The **ODDS** of breast cancer is 2.2 greater in those exposed to passive smoke than in unexposed.

#### **Alternatively:**

 The **RISK** of breast cancer is 2.2 greater in those exposed to passive smoke than in unexposed.

## Advantages of Case-Control Studies (1)

- Less expensive ...
- Require smaller sample sizes ...
- Shorter duration ... than prospective study
- Study multiple risk factors for 1 disease
- Easily reproduced in different populations by different investigators

#### **Disadvantages of Case-Control Studies (1)**

- Information about exposure is often obtained after the diagnosis is done
  - Example: diet, physical activity
- Dependent on the subject's memory, which may be affected by the disease

#### **Disadvantages of Case-Control Studies (2)**

Population of origin for cases is difficult to define precisely.

. . . . . . . . . . . . . . .

- Difficult to identify appropriate control group
- Does not provide estimate of risks and attributable risk