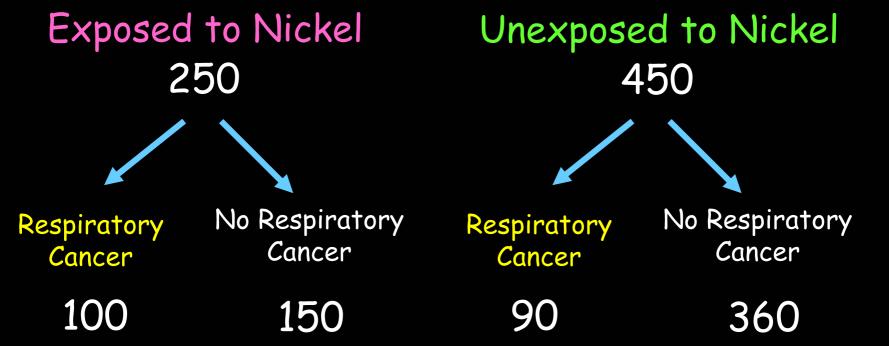
Cohort studies

Alfredo Morabia

Division d'épidémiologie Clinique, Département de médecine communautaire, HUG
Alfredo.Morabia@hcuge.ch
www.epidemiologie.ch

What is a cohort?


- 1. A place to play tennis
- 2. The tenth part of a Roman legion
- 3. A population that is surveyed at a given moment in time
- 4. People born hundred (*co*-hort) year apart
- 5. Equivalent to a trohoc

Outline

- Working Example
 - Welsh Nickel Workers Study
 - Description of the study and raw data in...
 - Breslow, N.E., Day N.E.
 Statistical Methods in Cancer
 Research. IARC, 1987:369-74

Cohort Design

SOUTH WALES REFINERY WORKERS

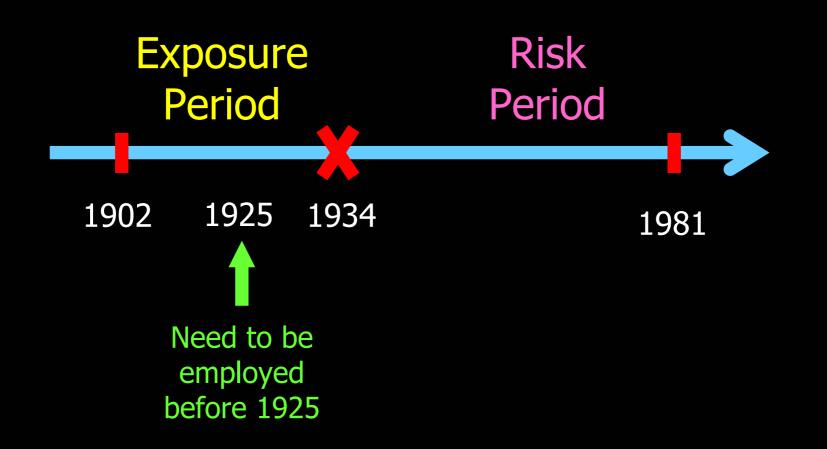
Example

250 Exposed 450 Unexposed To Nickel

Respiratory Cancer 100 90

Person-years 4,100 11,000

Incidence Rate 0.024/yr 0.008/yr


Relative Incidence rate 3.0

Attributable Risk 0.016/yr

Study design

- Population: a Nickel factory of South Wales
- Nickel production by decomposition of gaseous nickel compounds
- Exposure: according to information on jobs at high risk of exposure held from 1902 to 1934
- Risk period: count cases of RC* between April 1934 to December 1981
- Outcome: respiratory, mostly lung and nasal cancer

Study design

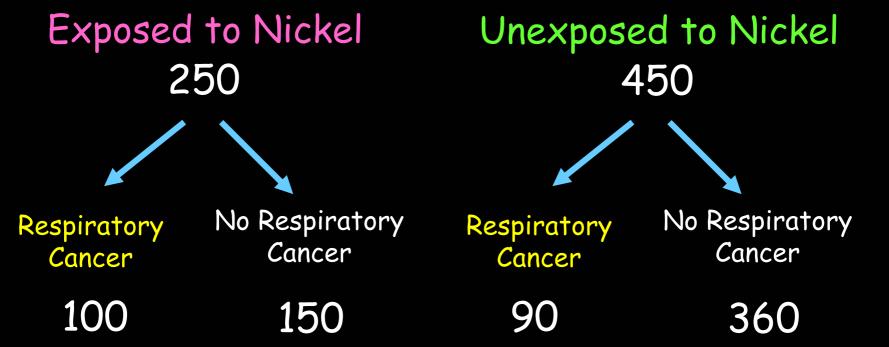
Which is the most fundamental condition for the validity of this cohort design?

- Subjects need to be:
 - 1. A random sample of the population?
 - 2. At risk of developing lung or nasal cancer?
 - 3. Unlikely to get colon cancer?
 - 4. Randomized to nickel exposure?
 - 5. Willing to answer questionnaires for many years ?

"At risk of Respiratory Cancer"

- Never had respiratory cancer: exclude prevalent cases
- Still have two lungs ... and a nose: exclude subjects who cannot travel from the denominator to the numerator

"Incident Respiratory Cancer"


- Incident = "newly diagnosed"
- Between April 1,1934 and December 31,1981
 - Risk Period = 47 years
- Employed in the factory before 1925

What is the risk of respiratory cancer in this study?

- Probability of developing RC per 100,000 workers and per year
- 2. Probability of developing RC over 47 years
- 3. The excess probability of RC due to exposure
- 4. The ratio of the probability of RC in exposed over the probability of RC in unexposed
- 5. A synonymous for the odds of RC

Cohort Design

SOUTH WALES REFINERY WORKERS

Risk of respiratory cancer in unexposed

Unexposed to

Nickel

Respiratory Cancer

90

Total

450

Person-years

11,000

Risk =

Interpretation:

What is the risk of respiratory cancer in unexposed?

1.
$$\left(\frac{90}{450}\right)$$
 2. $\left(\frac{90}{450-90}\right)$ 3. $\left(\frac{450-90}{450}\right)$

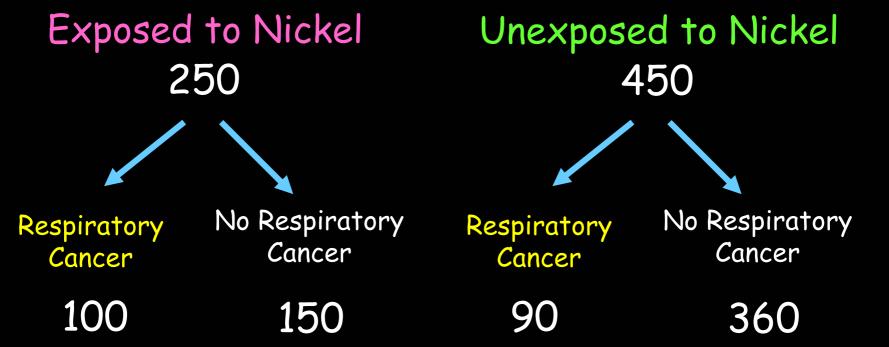
$$\frac{2}{450-90}$$

$$4. \left[\frac{90}{11,000} \right]$$

4.
$$\left(\frac{90}{11,000}\right)$$
 5. $\left(\frac{90}{11,000-90}\right)$

Calculating Risk in Unexposed

$$Risk_{time} = \left(\frac{New \text{ events}}{Population "at risk" at baseline}\right)$$


$$Risk_{47 \text{ yrs}} = \frac{90 \text{ cases of RC}}{450 \text{ subjects}} = 0.2 = 20\%$$

Risk in Unexposed

- Interpretation:
 - Probability of developing a respiratory cancer in workers unexposed to nickel is 20% over 47 years

Cohort Design

SOUTH WALES REFINERY WORKERS

Risk of respiratory cancer in exposed to nickel

Exposed to

Nickel

Respiratory Cancer 100

Total 250

Person-years 4,100

Risk =

Interpretation:

Calculating Risk in Exposed

$$Risk_{time} = \left(\frac{New \text{ events}}{Population "at risk" at baseline}\right)$$

$$Risk_{47 \text{ yrs}} = \begin{pmatrix} 100 \text{ cases of RC} \\ \hline 250 \text{ subjects} \\ \text{free of RC} \end{pmatrix} = 0.4 = 40\%$$

Risk in Exposed

- Interpretation:
 - Probability of developing a respiratory cancer in workers exposed to nickel is 40% over 47 years

What is an incidence rate of respiratory cancer in this study?

- Probability of developing RC per 100,000 workers and per year
- 2. Probability of developing RC over 47 years
- 3. The excess probability of RC due to exposure
- 4. The ratio of the probability of disease in exposed over the probability of disease in unexposed
- 5. Equivalent to the odds of disease (odds of RC)

Notation

- \blacksquare R = Risk
- IR = Incidence rate
- E+ = Exposed to nickel
- E— = Non-exposed to dimes
- R(E+) = Risk in exposed to nickel
- IR(E+) = Incidence rate in exposed to nickel

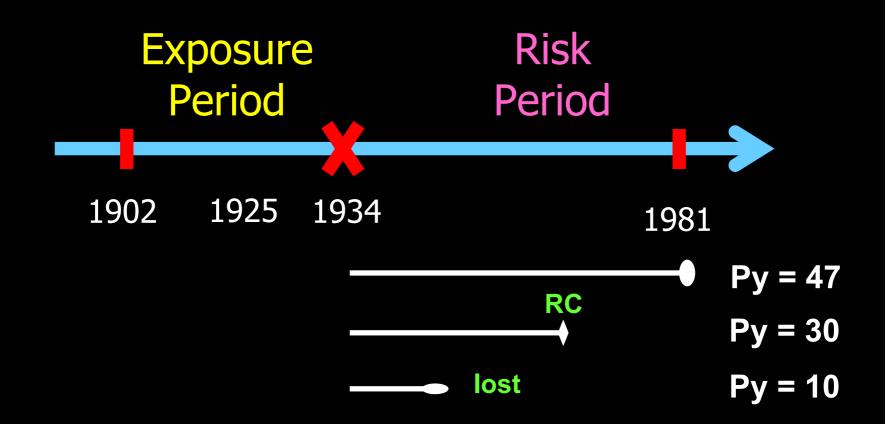
Incidence rate (IR) = risk per unit of time

- Risk period = 47 yrs.
- Some subjects followed-up for < 47 yrs.
 - E.g., cases, losses to follow-up

Solution # 1

 = divide risk by average duration of follow-up (44yrs)

IR (E-) =
$$\frac{90 \text{ cases RC}}{250 \text{ men * 44 yrs}}$$


$$= \left(\frac{90}{11,000 \text{ person-years}}\right) = 0.008/\text{yr}$$

Incidence rate (IR) = risk per unit of time

Solution # 2

- Use person-time as denominator
- 1 person followed for 2 years = 2 person-year
- 1 person followed for 1 year = 1 person-year

Study design

Example

	Exposed to Nickel	Unexposed to Nickel
Respiratory Cancer	100	90
Person-years	4,100	11,000
Incidence Rate	?	0.008

What is an attributable risk in this study?

- 1. The ratio of the risk of RC in exposed to Nickel over the risk in unexposed?
- 2. The risk of RC that is not due to Nickel exposure
- 3. The excess rate of RC observed in subjects exposed to nickel compared to unexposed
- 4. The number of workers that need to be exposed to nickel in order to observe an additional case of RC
- 5. All of the above

Absolute Effect: Attributable Risk (AR) (2)

$$AR = IR(E+) - IR(E-)$$

- = IR (E+) IR (E-)
- = 0.024/yr 0.008/yr = 0.016/yr
- = 16 / 1,000/y
- = Excess IR of RC due to nickel

Attributable Risk

- Additive Model:
 - IR(E+) = $\left[IR(E-) + AR\right] = 0.008 + 0.016 = 0.024$
- Synonymous:
 - Excess Risk
 - Risk Difference
 - Excess Rate
- Note: Don't confuse with "population attributable risk"

What is a relative risk in this study?

- 1. The ratio of the IR of RC in exposed to nickel over the IR in unexposed?
- 2. The IR of RC that is not due to nickel exposure
- 3. The excess risk of RC observed among subjects exposed to nickel
- 4. The number of workers that need to be exposed to nickel in order to observe an additional case of RC
- 5. None of the above

Relative Effect: Relative Incidence Rate (RIR)*

RIR =
$$\frac{IR(E+)}{IR(E-)} = \frac{0.024}{0.008} = 3.0$$

* Also referred to as relative risk

Relative Effect

 Risk in exposed is a multiple of risk in unexposed

```
IR(E+) = [IR(E-) * RIR] = [0.008
* 3.0]
= 0.024/yr
```

Relative Effect

RIR > 1 Nickel exposure increases RC risk

RIR = 1 No effect of nickel exposure

RIR < 1 Nickel exposure protects from RC

Relative or Absolute Effect

R(E+)	R(E-)	RR	AR
24 %o/yr	8 %o/yr	3.0	16 %/yr
60 %o/yr	20 %o/yr	3.0	40 %/yr

Interpretation

- Attributable risk measures clinical and public health importance of the causal relationship
- Relative risk assesses strength of the association

Example: Wrapping up

250 Exposed To Nickel

450 Unexposed To Nickel

Respiratory Cancer

100

90

Person-years

4,100

11,000

Incidence Rate

0.024/yr

0.008/yr

Relative Incidence rate

3.0

Attributable Risk

0.016/yr

Prospective Studies: Advantages

- Exposure to postulated cause is assessed before occurrence of disease
- Possible to estimate all measures of incidence and effect
- Possible to study several outcomes to one cause

Prospective Studies: Disadvantages

- Requires large investments in time, human and financial resources
- Requires large sample sizes (e.g., 110.000 nurses, 59.600 doctors, 1.2 millions volunteers), unless risk period is very long
- Not easy to reproduce (Re: consistency of the association)

What is a RCT?

- 1. The comparison of cases of disease with controls
- 2. A cohort study in which exposure is randomized?
- 3. A study design invented by R.A. Fisher
- 4. A study design discovered by G. Mendel
- 5. The only **fully** valid study design available in epidemiology

Prospective Studies: RCT

- Sub-type of cohort study in which exposure (i.e., treatment) is randomly assigned
- Important in evidence-based medicine