

Determining Cost-effectiveness of Screening

Saloney Nazeer Department of Gynaecology & Obstetrics

Screening Definition

 Screening is the presumptive identification of unrecognized disease or defect by means of tests, examinations, or other procedures that can be applied rapidly

The AIM of screening is to provide a preinvasive diagnosis of the disease

The **OBJECTIVE** of screening is to reduce risk of death from the disease

Cost-Effectiveness of Screening

Effectiveness

• VALUE =

Cost

To Screen or Not to Screen

- Balancing the effect on;
- Length of Life screening experts
- (relatively well known, easy to establish)
- Quality of life women
- (poorly known, difficult to measure)
- Cost administrative officials

(relatively poorly known, relatively easy to measure)

<u>Prerequisites of a successful</u> <u>screening programme</u>

A CANCER is suitable for screening if:

- <u>a</u> cancer is a major health problem justifying screening
- natural history of disease long enough detectable pre clinical phase
- significant proportion of preclinical lesions progress to clinical disease
- available acceptable treatment

Prerequisites (Cont'd)

SCREENING TEST:

- is valid for identifying preclinical lesions
- acceptable (easy to apply, no pain, no sideeffects)
- Screening interval
- affordable

Prerequisites (Cont'd)

SCREENING PROGRAMME:

• opportunistic vs organized

<u>Characteristics of an Organized</u> <u>Screening Program</u>

- Identification of target Population
- Measures for high <u>coverage</u> and attendance
- Clear screening protocol: health objectives
- Adequate field facilities
- Adequate facilities for diagnosis, Rx and FU
- Information system (cancer registry)
- Evaluation and monitoring (Process and Outcome quality indicators)
 HUG®

Priorities and strategies for the eight most common cancers worldwide¹

Site of	Primary	Early	Curative	Pain relief and
Cancer ²	Prevention	diagnosis	therapy	palliative care
Lung	++	-	-	++
Stomach	+	-	-	++
Breast	+	++	++	++
Colon/rectum	+	++	++	++
Cervix	++	++	++	++
Mouth/pharynx	++	+	++	++
Oesophagus	+	-	-	++
Liver	++	-	-	++

¹Adapted from WHO 1995

Listed in order of global prevalence

For the majority of cases, provided that there is early diagnosis

++ = effective; += Partly effective - -= inactive

ANNUAL ESTIMATES OF NEW CASES GLOBALLY

	Incidence	<u>Mortality</u>
 Breast Cancer 	795 000	313 000
 Cervical Cancer 	450 000	300 000
• Ovarian Cancer	165 000	101 000
• Endometrial Car	ncer 142 000	42 000

HUG UNIVERSITATIVE

- Sensitivity: 11 to 99%
- Specificity: 14 to 97%
- False negative: 5 to 55%
 -Errors of Commission: laboratory errors-1/3
 -Errors of Ommission: sampling errors-2/3
- Costs

Fahey et al

Reduction in cumulative incidence of invasive cervical cancer over the age range 35-64 yrs, with different frequencies of screening (WHO, 1992)

Frequency of screening	Percentage reduction in cumulative incidence	No. of tests
1year	93	30
2 years	93	15
3 years	91	10
5 years	84	6
10years	64	3

Reduction in cumulative incidence of invasive cervical cancer over the age range 35-64 yrs, with different population coverage and different frequencies of screening (WHO, 1992)

Frequency of screening	% of Population screened	Percentage reduction in cumulative incidence	No. of tests
lyear	20	19	6
2 years	30	28	4.5
3 years	40	37	4
5 years	50	42	3
10years	80	51	2.4

Cost-effectiveness of two different strategies for cervical cancer screening Chile (*Eddy/WHO*; 1986)

	Programme 1	Programme 2
• Age	30-55 yrs	30-50 yrs
• Frequency	3 yrly	10 yrly
• Coverage	30%	90%
• ↓ Mortality	15%	44%
• \downarrow Rx cost	USD 0.13 m	USD 0.25 m
Cost/case	USD 2 522	USD 556

WHO Guidelines: Technical/Managerial

- IEC + Organized screening programmes
- Pap-smear: the proven method
- Screen every woman at age 45
- When resources permit screen 10yrly at age 35, 45, 55
- If resources available, screen 5yrly age 35-59
- Once coverage achieved (80%)- expand to age 25 (if resources available)

Characteristics of Failing <u>Screening</u> <u>Programme</u>; *in order of importance*

- Failure to reach the women at risk (opportunistic screening)
- Inadequate follow-up of abnormal results
- Long/short screening intervals
- Lack of quality control

Available Control Strategies

<u>Strategy</u>		<u>Cases (%)</u>	Deaths (%)
Tobacco		20	30
Diet		25	20
Infections		15	10
Screening		3	4
	Cervix	60	60
	Breast	0	25
Treatment		0	20

Time to show Important Impact of Different Measures

Prevention	<u>Time (in yrs)</u>
Tobacco	30
Diet	10-50
Infections	40
Screening	5-10
Treatment	5

Summary of cost utility analysis in 2010 due to screening by primary site. All Nordic countries combined (USD) Primary Site

		Breast	Cervix	Colore	<u>ctum</u>
				Females	Males
•	Death avoided	77 100	-11 700	42 400	42 200
•	LYG	15 400	-1 700	5 300	6 000
•	QALYG	15 900	-1 700	5 600	6 400
•	DFLYG	18 100	-2 000	6 200	6 500
•	GQLYG	18 700	-2 000	6 700	7 500

- **LYG:** Life years gained
- **QALYG:** Quality adjusted life years gained
- **DFLYG:** Dementia free life years gained
- GQLYG: Good quality of life years gained (adjusted for quality demention

Cost of screening for different kinds of cancer per expected year of increased survival in females (USD)

Age	Cervix	Breast	Colorectum*
30-39	2 782	2 578	
40-49	5 902	1 483	291
50-59	7 451	2 488	149
60-69	8 726	2 0 5 0	113
70-79	14 867	3 241	110

* Screening starts at age 40

Disadvantages of Screening

 Unecessary morbidity & over treatment - false positives & borderline abnormalities

• Lead time morbidity - true positives

Psychological morbidity

Conclusion

 The decision to establish and continue screening programmes depends not only on the factual evidence but also on whose values of benefits, harms & costs prevail

• A compromise has to be reached between longevity, quality of life and cost

