Strategies for data analysis: Cohort studies

Postgraduate Research Training in Reproductive Health

Dr Calvin Tiyou Kenmeni
Department of Obstetrics and Gynaecology
Faculty of Medicine and Biomedical sciences (FMBS)
University of Yaounde I – Cameroon
tiyoukc@yahoo.fr

Yaounde, 14 November 2007
Two main types of epidemiologic studies

- **Observational**: the epidemiologist observes the association between exposure and outcome (e.g. passive smoking and breast cancer)

- **Experimental**: the epidemiologist performs an experiment, he/she controls the conditions under which the study is conducted (he/she is able to assign subjects to a treatment or comparison group and then follow them up to see if there are differences in the occurrence of disease between the two groups; e.g. calcium supplementation and pre-eclampsia)
Two types of observational studies

- **Cohort study**: one begins with a group of persons exposed to a factor of interest and a group of persons not exposed. The persons are then followed for the development of the disease of interest.

- **Case-control study**: one assemble a group of persons with a disease (cases) and a group of persons with no disease (controls). The history of past exposure to the factor of interest is then compared between the cases and controls.
Design of cohort studies: prospective

- Defined population
- Exposed
- Non-exposed
- ill
- Not ill

Factors:
- Lifestyle
- Genetic factors
- Environmental factors

Hypothesis

T1 - T2
Design of cohort studies: prospective

Population ➔ Exposed ➔ ill, Not ill

Lifestyle

Genetic factors ➔ Exposed

Environmental factors ➔ Exposed

What is the outcome?

T1 ➔ T2

Dr C. Tiyou Kenmeni GFMER/WHO 2007
Design of cohort studies: prospective

Population

Not exposed

Lifestyle

Genetic factors

Environmental factors

ill

Not ill

What is the outcome?

T1

T2

Dr C. Tiyou Kenmeni GFMER/WHO 2007
Working Example

Welsh Nickel Workers Study

Description of the study and raw data in...

Study design

- Population: a Nickel factory of South Wales
- Nickel production by decomposition of gaseous nickel compounds
- Exposure: according to information on jobs at high risk of exposure held from 1902 to 1934
- Risk period: count cases of RC* between April 1934 to December 1981
- Outcome: respiratory, mostly lung and nasal cancer

* RC = respiratory cancer
Study design

Exposure Period

1902

1925

1934

Need to be employed before 1925

Risk Period

1981

Dr C. Tiyou Kenmeni GFMER/WHO 2007
Which is a fundamental condition for the validity of this cohort design?

- Subjects need to be:
 1. A random sample of the population?
 2. At risk of developing lung or nasal cancer?
 3. Unlikely to get colon cancer?
 4. Randomized to nickel exposure?
 5. Willing to answer questionnaires for many years?
Which is a fundamental condition for the validity of this cohort design?

- Subjects need to be:
 1. A random sample of the population?
 2. At risk of developing lung or nasal cancer?
 3. Unlikely to get colon cancer?
 4. Randomized to nickel exposure
 5. Willing to answer questionnaires for many years?
“At risk of Respiratory Cancer”

- Never had respiratory cancer: exclude prevalent cases
- Still have two lungs ... and a nose: exclude subjects who cannot travel from the denominator to the numerator
“Incident Respiratory Cancer”

- Incident = “newly diagnosed”
- Between April 1, 1934 and December 31, 1981
 Risk Period = 47 years
- Employed in the factory before 1925
What is the risk of respiratory cancer in this study?

1. Probability of developing RC per 100,000 workers and per year
2. Probability of developing RC over 47 years
3. The excess probability of RC due to exposure
4. The ratio of the probability of RC in exposed over the probability of RC in unexposed
5. A synonymous for the odds of RC
What is the **risk** of respiratory cancer in this study?

1. Probability of developing RC per 100,000 workers and per year

2. Probability of developing RC over 47 years

3. The excess probability of RC due to exposure

4. The ratio of the probability of RC in exposed over the probability of RC in unexposed

5. A synonymous for the odds of RC
Cohort Design

SOUTH WALES REFINERY WORKERS

Exposed to Nickel
- Respiratory Cancer: 100
- No Respiratory Cancer: 150

Unexposed to Nickel
- Respiratory Cancer: 90
- No Respiratory Cancer: 360

Total:
- Exposed: 250
- Unexposed: 450

No Respiratory Cancer: 360
Respiratory Cancer: 90
Risk of respiratory cancer in unexposed

<table>
<thead>
<tr>
<th></th>
<th>Unexposed to Nickel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory Cancer</td>
<td>90</td>
</tr>
<tr>
<td>Total</td>
<td>450</td>
</tr>
<tr>
<td>Person-years</td>
<td>11,000</td>
</tr>
</tbody>
</table>

Risk =

Interpretation:
What is the risk of respiratory cancer in unexposed?

1. \(\frac{90}{450} \)
2. \(\frac{90}{450-90} \)
3. \(\frac{450-90}{90} \)
4. \(\frac{90}{11,000} \)
5. \(\frac{90}{11,000-90} \)
Calculating Risk in Unexposed

\[
\text{Risk}_{\text{time}} = \frac{\text{New events}}{\text{Population « at risk » at baseline}}
\]

\[
\text{Risk}_{47 \text{ yrs}} = \frac{90 \text{ cases of RC}}{450 \text{ subjects free of RC}} = 0.2 = 20\%
\]
Risk in Unexposed

Interpretation:

Probability of developing a respiratory cancer in workers unexposed to nickel is 20% over 47 years.
Cohort Design

SOUTH WALES REFINERY WORKERS

Exposed to Nickel
- Respiratory Cancer: 100
- No Respiratory Cancer: 150

Unexposed to Nickel
- Respiratory Cancer: 90
- No Respiratory Cancer: 360

Total:
- Exposed: 250
- Unexposed: 450
Risk of respiratory cancer in exposed

Exposed to Nickel

<table>
<thead>
<tr>
<th>Respiratory Cancer</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>250</td>
</tr>
<tr>
<td>Person-years</td>
<td>4,100</td>
</tr>
</tbody>
</table>

Risk = served

Interpretation:
Calculating Risk in Exposed

\[\text{Risk}_{\text{time}} = \frac{\text{New events}}{\text{Population « at risk » at baseline}} \]

\[\text{Risk}_{47 \text{ yrs}} = \frac{100 \text{ cases of RC}}{250 \text{ subjects free of RC}} = 0.4 = 40\% \]
Risk in Exposed

Interpretation:

Probability of developing a respiratory cancer in workers exposed to nickel is 40% over 47 years.
What is an incidence rate of respiratory cancer in this study?

1. Probability of developing RC per 100,000 workers and per year

2. Probability of developing RC over 47 years

3. The excess probability of RC due to exposure

4. The ratio of the probability of disease in exposed over the probability of disease in unexposed

5. Equivalent to the odds of disease (odds of RC)
Notation

- R = Risk
- IR = Incidence rate
- E^+ = Exposed to nickel
- $R(E^+)$ = Risk in exposed to nickel
- E^- = Non-exposed to dimes
- $IR(E^+)$ = Incidence rate in exposed to nickel
Incidence rate (IR) = risk per unit of time

- Risk period = 47 yrs.
- Some subjects followed-up for < 47 yrs.
 E.g., cases, losses to follow-up

Solution # 1

= divide risk by average duration of follow-up (24yrs)
Risk = \frac{\text{New RC cases}}{\text{Pop. at risk}}

\text{Incidence Rate} = \frac{\text{New RC cases}}{\text{Pop. at risk} \times \text{Duration}}

\text{IR (R-)} = \frac{90 \text{ cases RC}}{450 \text{ men} \times 24 \text{ yrs}}

= \frac{90}{11,000 \text{ person-years}} = 0.008/\text{yr}
Incidence rate (IR) = risk per unit of time

Solution # 2

- Use person-time as denominator
- 1 person followed for 2 years = 2 person-year
- 1 person followed for 1 year = 1 person-year
Study design

Exposure Period

1902
1925

Risk Period

1934
1981

Py = 47
Py = 30
Py = 10

RC
Lost

Dr C. Tiyou Kenmoui GFMER/WHO 2007
Example

Respiratory Cancer

<table>
<thead>
<tr>
<th>Exposed to Nickel</th>
<th>Unexposed to Nickel</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>4,100</td>
<td>11,000</td>
</tr>
<tr>
<td>?</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Incidence Rate

\[
IR (E+) = \frac{100 \text{ cases RC}}{4,100 \text{ person-years}} = 0.024 / \text{yr}
\]
What is an incidence rate of respiratory cancer in this study?

1. Probability of developing RC per 100,000 workers and per year

2. Probability of developing RC over 47 years

3. The excess probability of RC due to exposure

4. The ratio of the probability of disease in exposed over the probability of disease in unexposed

5. Equivalent to the odds of disease (odds of RC)
What is an incidence rate of respiratory cancer in this study?

1. Probability of developing RC per 100,000 workers and per year

2. Probability of developing RC over 47 years

3. The excess probability of RC due to exposure

4. The ratio of the probability of disease in exposed over the probability of disease in unexposed

5. Equivalent to the odds of disease (odds of RC)
What is an attributable risk in this study?

1. The ratio of the risk of RC in exposed to Nickel over the risk in unexposed?
2. The risk of RC that is not due to Nickel exposure
3. The excess rate of RC observed in subjects exposed to nickel compared to unexposed
4. The number of workers that need to be exposed to nickel in order to observe an additional case of RC
5. All of the above
Absolute Effect:
Attributable Risk (AR)

\[AR = IR(E+) - IR(E-) \]

\[= 0.024/yr - 0.008/yr = 0.016/yr \]
\[= 16 /1,000/y \]
\[= \text{Excess IR of RC due to nickel} \]

Synonymous:

- Excess Risk
- Risk Difference
- Excess Rate
What is an *attributable risk* in this study?

1. The ratio of the risk of RC in exposed to Nickel over the risk in unexposed?
2. The risk of RC that is not due to Nickel exposure
3. The excess rate of RC observed in subjects exposed to nickel compared to unexposed
4. The number of workers that need to be exposed to nickel in order to observe an additional case of RC
5. All of the above
What is an **attributable risk** in this study?

1. The ratio of the risk of RC in exposed to Nickel over the risk in unexposed?

2. The risk of RC that is not due to Nickel exposure

3. The excess rate of RC observed in subjects exposed to nickel compared to unexposed

4. The number of workers that need to be exposed to nickel in order to observe an additional case of RC

5. All of the above
What is a relative risk in this study?

1. The ratio of the IR of RC in exposed to nickel over the IR in unexposed?
2. The IR of RC that is not due to nickel exposure
3. The excess risk of RC observed among subjects exposed to nickel
4. The number of workers that need to be exposed to nickel in order to observe an additional case of RC
5. None of the above
Relative Effect:

Relative Incidence Rate (RIR)

\[
\text{RIR} = \frac{\text{IR (E+)}}{\text{IR (E-)}} = \frac{0.024}{0.008} = 3.0
\]

* Also referred to as relative risk (RR)
What is a relative risk in this study?

1. The ratio of the IR of RC in exposed to nickel over the IR in unexposed?
2. The IR of RC that is not due to nickel exposure
3. The excess risk of RC observed among subjects exposed to nickel
4. The number of workers that need to be exposed to nickel in order to observe an additional case of RC
5. None of the above
What is a relative risk in this study?

1. The ratio of the IR of RC in exposed to nickel over the IR in unexposed
2. The IR of RC that is not due to nickel exposure
3. The excess risk of RC observed among subjects exposed to nickel
4. The number of workers that need to be exposed to nickel in order to observe an additional case of RC
5. None of the above
Relative Effect

Risk in exposed is a multiple of risk in unexposed

$$\text{IR (E+)} = \left[\text{IR(E-)} \times \text{RIR} \right] = \left[0.008 \times 3.0 \right]$$

$$= 0.024/\text{yr}$$
Relative Effect

<table>
<thead>
<tr>
<th>RR</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 1</td>
<td>Nickel exposure increases RC risk</td>
</tr>
<tr>
<td>= 1</td>
<td>No effect of Nickel exposure</td>
</tr>
<tr>
<td>< 1</td>
<td>Nickel exposure protects from RC</td>
</tr>
</tbody>
</table>
Relative or Absolute Effect

<table>
<thead>
<tr>
<th>IR (E+)</th>
<th>IR (E-)</th>
<th>RR</th>
<th>AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/1000/yr</td>
<td>8/1000/yr</td>
<td>3.0</td>
<td>16/1000/yr</td>
</tr>
<tr>
<td>60/1000/yr</td>
<td>20/1000/yr</td>
<td>3.0</td>
<td>40/1000/yr</td>
</tr>
</tbody>
</table>
Interpretation

- **Attributable risk** measures clinical and public health importance of the causal relationship.

- **Relative risk** assesses strength of the association.
Example: Wrapping up

Respiratory Cancer

<table>
<thead>
<tr>
<th></th>
<th>Exposed to Nickel</th>
<th>Unexposed to Nickel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person-years</td>
<td>250</td>
<td>450</td>
</tr>
<tr>
<td>Incidence Rate</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Relative Incidence rate</td>
<td>0.024/yr</td>
<td>0.008/yr</td>
</tr>
<tr>
<td>Attributable Risk</td>
<td>3.0</td>
<td>0.016/yr</td>
</tr>
</tbody>
</table>

Dr C. Tiyou Kenmeni GFMER/WHO 2007
Prospective Studies : Advantages

- Exposure to postulated cause is assessed before occurrence of disease
- Possible to estimate all measures of incidence and effect
- Possible to study several outcomes to one cause
Prospective Studies: Disadvantages

- Requires large investments in time, human and financial resources
- Requires large sample sizes (e.g., 110,000 nurses, 59,600 doctors, 1.2 millions volunteers)
- Not easy to reproduce (Re: consistency of the association)
Thank you for lending me your ears

Special acknowledgements to

Hans Wolff, Hôpitaux Universitaires de Genève (HUG)