IMPAIRED FETAL GROWTH

Mario Merialdi Office X 39 Phone 022 7913387 merialdim@who.int

Historical perspective

Public health importance

Impaired fetal growth is:

- prevalent in developing countries
- is associated with short and long term negative outcome in fetuses, infants and children
- may be associated with development of disease in adult life

Today's approach

- Assessment fetal growth in populations
- Prevalence in different countries
- Consequences for health
- Interventions to prevent impaired fetal growth
- Further research

Characteristics of the fetus with IUGR

- Asymmetry in the dimensions of head and abdomen
- Reduced amniotic fluid
- Small placenta

Pathophysiology of impaired fetal growth

Placental insufficiency:

- Reduced transfer of nutrients
- Fetal hypoperfusion

Consequences of IUGR

- Higher perinatal morbidity and mortality
- Higher infant mortality and childhood morbidity
- Poor cognitive development and neurologic impairment
- Increased risk in adulthood of cardiovascular disease, high blood pressure, obstructive lung disease, diabetes, high cholesterol and renal damage.

Population based Perinatal mortality according to birth weight percentile: Chile, all 262681 deliveries in 1999

Edad gestacional (semanas)	<p5< th=""><th><p10< th=""><th>p10-90</th><th>Ratio <p10 p10-90<="" th=""></p10></th></p10<></th></p5<>	<p10< th=""><th>p10-90</th><th>Ratio <p10 p10-90<="" th=""></p10></th></p10<>	p10-90	Ratio <p10 p10-90<="" th=""></p10>
22-25	1000	1000	679	1.5
26-29	616	519	288	1.8
30-33	372	357	116	3.1
34-36	168	128	30	4.3
37-40	19	12	2	6.0
41-43	14	10	2	5.0
Total	110	62	3	20.7

Gonzalez R. personal communication (2003)

IUGR and mortality

Assessment of fetal growth

- Retrospective assessment using anthropometric measures of size at birth (birth weight)
- Prospective assessment by serial clinical evaluations (uterine height, ultrasound measurements of fetal anatomical parameters)

Classification of fetal growth based on birth weight

- Low birth weight: < 2500 grams (does not differentiate between infants born small at term or infants small because they are preterm)
- Small for gestational age: birth weight below the the 10th percentile for a given gestational age (may erroneously categorize some normal growth newborns as growth impaired).

Figure 18

Birth weight percentiles and perinatal mortality rates (per 1000) for single female births^a

Note: The mean birth weight-gestational age combination is marked with a black dot. Down the righthand side are the birth-weight-specific rates for all gestational ages, and across the top are the gestational-age-specific rates for all birth weights. The birth-weight/gestational-age-specific mortality rates, computed on the basis of 2-week gestation and 250-g weight intervals, are plotted within the square corresponding to the appropriate intersection of the birthweight/gestational-age grid. For example, the perinatal mortality rate for infants weighing between 3251 and 3500 g and of 40 and 41 completed weeks of gestation is 3.1. The perinatal mortality rate for the birth-weight group 3251-3500 g for all gestational ages is 4.0 per 1000, and the perinatal mortality rate for the 40- to 41-week gestational age group for all birth weights is 5.0.

														12		
			890	851	519	339	201	107	46	21	6.8	5.0	9.2	12	14	
							}									
	4500									77	27	16	15	26		22
	4500									21	9.0	3.9	7.2			7.3
									22	7.7	4.1	2.9	3.9	10		4.4
	4000								10	4.7	3.1	3.0	4.2	6.3	11	 4.1
									7.9	3.8	2.7	2.5	4.9	6.0	6.1	3.5
	3500							12	8/2	5.6	3.7	<i>∕</i> 3.∓	4.6	6.1	8,5	 4.0
					ł			19	9.4	5.7	3.9	4.3	7.5	9.5	11	5.2
	3000						35	18	11	/8.0	6.0	6.9	8.0	-11	17	7.5
ams)					}		69	/ 31	10	14	11	12	14	21	36	14
t (gra	2500					89	62	46	36	28	25	31	38	52	77	 32
Birth weight (grams)					154	118	94	τħ	59/	55	59	70	93	138		67
rh v	2000				185	147	126	/117	1/15	118	134	158	194	251		 129
ä				235	218/	209	208	198⁄	205	271	261	224	172			226
	1500			443	365	32ø	315	3/24	373	399	425	453				 349
			616	521	471	456	474	516	551	595	651					498
	1000	90%	921	783	709	685	705	774	905							 764
	90% 50%	972	960	899	944	954									952	
	500	(/												
		10%	Γ													
	0		 22		26		30		⊥ 34		8		2	4		
		2						ation				-	-		-	

^a Reproduced from reference 84 with permission from the American College of Obstetricians and Gynecologists.

Reference data based on birth weight

The method is relatively easy to implement but has limitations:

- the cross sectional approach (data collected at birth from infants of different ages) may not reflect the longitudinal growth of fetuses of the same ages
- inaccuracies of estimation of gestational age at delivery affect interpretation
- pathological processes that could affect the size of infants born early in gestation

Ultrasound measurements

- Large coefficient of variation associated with estimations of fetal weight
- Margin of error in measuring individual anatomical parameters is contained
- Allow for both cross sectional and longitudinal assessment (Individualized Growth Assessment)

Internationally recommended cut-off levels for triggering public health action

- IUGR > 20%
- LBW > 15%

Estimates of impaired fetal growth in developing countries

Indicator	Source	%	Estimated total number of newborns affected per year
IUGR-LBW (<2500 g; >= 37 wks)	LBW rates from WHO data bank (1992) and regression model (Villar, 1994)	11	13,699,000
LBW < 2500 g all gestaional ages	LBW rates from who data bank (1982)	16.4	20,423,000
IUGR < 10 percentile all gestational ages	WHO collaborative study on maternal anthropometry and pregnancy outcomes (1995)	23.8	29,639,000

Global estimates of IUGR-LBW in developing countries (1985-1995)

IUGR-LBW

- Estimates should be viewed as conservative
- 75% of all affected newborns are born in Asia
- Rates are 6 times larger than in developed countries
- We need to improve:
 - quality and availability of birth weight data
 - assessment of gestational age

Interventions to prevent or treat impaired fetal growth

Care and advice during pregnancy

Intervention	# trials	Participants (E+C)	Outcome	OR (95% CI)
Continuity of caregivers	2	908+907	Term - LBW	0.94 (0.65, 1.36)
Social support for women at risk	8	3564 + 3477	Term - LBW	0.97 (0.84, 1.13)
Own case-notes	2	276 +276	Term - LBW	0.67 (0.35, 1.30)
Stop smoking	5	2950 + 2771	Term - LBW	0.80 (0.65, 0.98)
Nutritional advice	1	265 + 250	SGA	1.00 (0.48, 2.08)

Antimalarial chemoprophylaxis

Intervention	# trials	Participants (E+C)	Outcome	Mean difference (95% CI)
All parities	5	1453 + 1616	MBW	23g (-13, 59)
Multigravida	2	342 + 362	MBW	65g (4, 125)
Primigravida	4	295 + 340	MBW	112g (41, 183)

Nutritional interventions

Intervention	# trials	Participants (E+C)	Outcome	RR (95% CI)
Balanced protein energy	6	2147+2123	SGA	0.68 (0.57, 0.80)
Isocaloric balanced protein		391 + 391	SGA	1.35 (1.12, 1.61)
High protein		249 +256	SGA	1.58 (1.03, 2.51)
Salt restriction	1	110 + 132	SGA	1.50 (0.73, 3.07)
Salt restriction	1	184 + 177	LBW	0.84 (0.42, 1.67)

Nutritional interventions

Intervention	# trials	Participants (E+C)	Outcome	RR (95% CI)
Calcium	1	97 +93	SGA	0.72 (0.26, 1.99)
Calcium	7	3230 + 3261	LBW	0.83 (0.71, 0.98)
Folate	5	754 +734	LBW	0.75 (0.50, 1.12)
Iron selective vs. routine	1	50 + 50	SGA	1.60 (0.56, 4.56)

Nutritional interventions

Intervention	# trials	Participants (E+C)	Outcome	RR (95% CI)
Magnesium	3	865 + 876	SGA	0.70 (0.53, 0.93)
Magnesium	4	968 + 986	LBW	0.67 (0.46, 0.96)
Zinc	3	909 + 931	SGA	0.90 (0.64, 1.28)
Zinc	5	750 + 722	LBW	0.77 (0.56, 1.06)
Vitamin D	1	67 + 59	SGA	0.54 (0.26, 1.10)

Most interventions aimed to prevent or treat impaired fetal growth do not show significant effects on short term perinatal outcomes

Factors influencing the results of clinical trials evaluating nutritional interventions during pregnancy

Epidemiological association vs. effectiveness of pragmatic interventions

- Results from observational studies or uncontrolled observations are likely to be confounded by the effect of population characteristics
- Women from disadvantaged populations are more at risk for nutritional deficiencies as well as for pregnancy complications
- Intervention groups may be better off and have better outcomes

Factors influencing the results of clinical trials evaluating nutritional interventions during pregnancy

Timing of the insult and different fetal organ growth patterns

- Fetal organs show differential growth patterns and contribute differently to total fetal volume at different gestational ages (eg.: relationship between head and abdomen)
- The effect of a nutritional deficiency or nutritional intervention on a the growth of a fetal organ is likely to be related to the timing of he insult during gestation

Factors influencing the results of clinical trials evaluating nutritional interventions during pregnancy

Timing of nutrient deposition in the mother and the effect on fetal growth

- Differential timing of nutrient deposition and its body location may also influence nutrient transfer to the fetus
- Birth weight is associated more with maternal changes in thigh skinfolds and early gestation fat gain than with other body sites or pregnancy times

Factors influencing the results of clinical trials evaluating nutritional interventions during pregnancy

Length and amount of nutritional supplementation

- It is unrealistic to assume that chronic undernutrition during two or three decades of life will be overcome, in terms of reproductive performance with only a few months of extra nutrient intake
- Energy supplementation was more effective on birth weight if it was provided for two consecutive pregnancies than during only one pregnancy

Factors influencing the results of clinical trials evaluating nutritional interventions during pregnancy

Pharmacological vs. Nutritional effect

- Nutrients can be provided to population with dietary deficiency (nutritional effect) or to population with adequate intake (pharmacological effect)
- Calcium supplementation for the prevention of preeclampsia seems to be effective in low calcium intake women but not in adequate calcium intake women.

Factors influencing the results of clinical trials evaluating nutritional interventions during pregnancy

Intervention specific outcomes

- It is important to identify the most specific outcome in reference to the nutrient being evaluated
- Zinc supplementation did not increased birthweight but had a positive effect on femur length measured by ultrasonography
- "Birth weight may be too crude a marker to to capture the range of all possible uterine exposure and experiences"

28 weeks

Factors influencing the results of clinical trials evaluating nutritional interventions during pregnancy

Heterogeneity of outcomes

- Low birth weight and small for gestational age includes conditions with different aetiologies.
- These outcomes may be too comprehensive to be significantly affected by a single nutritional intervention

Further research

- Extend the duration of nutritional supplementation interventions and follow up (Barker hypothesis)
- Identify new outcomes and evaluate their biological and clinical relevance
- Evaluate combinations of interventions
- Develop mechanistic hypotheses
- Identify the determinants of fetal growth (genetics vs. environment) and develop standards of fetal growth for international applications
- Individualised Growth Assessment

Individualised Growth Assessment

- Each fetus serves as its own control
- The expected normal range of growth is determined by an equation using measurements from two fetal biometry assessments performed during the second trimester
- Takes into account the fetal growth potential of each individual fetus

Review: Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems								
Comparison: 02 Routine calcium supplementation in pregnancy by baseline dietary calcium								
Outcome: 02 Pre-ecla	•							
Study	Treatment	Control	Relative Risk (R		Weight %	Relative Risk (Random)		
			C	:1		95% CI		
01 Adequate calcium die	t							
CPEP 1997	158 / 2163	168 / 2173	-		19.2	0.94 [0.77, 1.16]		
Crowther 1999	10 / 227	23 / 229			14.7	0.44 [0.21, 0.90]		
Villar 1987	1/25	3/27	4 • +		4.7	0.36 [0.04, 3.24]		
Villar 1990	0/90	3/88	4+		2.9	0.14 [0.01, 2.67]		
Subtotal (95% Cl)	169 / 2505	197 / 2517			41.5	0.62 [0.32, 1.20]		
Test for heterogeneity chi	-square=6.20 df=	=3 p=0.1024						
Test for overall effect Z=-1	1.43 p=0.15							
03 Low calcium diet								
Belizan 1991	15 / 579	23 / 588			15.5	0.66 [0.35, 1.26]		
L-Jaramillo 1989	2/55	12 / 51	4 • ────		8.3	0.15 [0.04, 0.66]		
L-Jaramillo 1990	0/22	8/34	4	-	3.2	0.09 [0.01, 1.48]		
L-Jaramillo 1997	4 / 125	21 / 135	4 ∎		11.5	0.21 [0.07, 0.58]		
Purwar 1996	2/97	11/93	4 - ● ────		8.0	0.17 [0.04, 0.77]		
S-Ramos 1994	4/29	15 / 34	-		12.0	0.31 [0.12, 0.84]		
Subtotal (95% Cl)	27 / 907	90 / 935			58.5	0.29 [0.16, 0.54]		
Test for heterogeneity chi	-square=8.04 df=	=5 p=0.1540						
Test for overall effect Z=-4	4.00 p=0.00							
Total (95% Cl)	196/ 3412	287/3452			100.0	0.37 [0.21, 0.64]		
Test for heterogeneity chi	-square=28.67 d	f=9 p=0.0007						
Test for overall effect Z=-3	3.57 p=0.00							
				5 10				
			0.1 02 1	5 10				

Reduced transfer of nutrients

- Abnormalities of the placenta lead to increased resistance of blood flow in the placenta
- Increased resistance determines a reduction of flow through the placenta
- the fetus reacts to a condition of limited supply of nutrients and oxygen by vascular redistribution that spares vital organs (brain, myocardium, adrenal glands).