Microbicides Research and Development: State of the Art

Isaac M. Malonza, MD, MPH
Post-Graduate Course, Training in Research in Sexual Health, 9 March 05
Overview of Presentation

- The need for women-controlled methods
- What are microbicides?
- Mechanisms of action
- Microbicide pipeline
- Public health benefits
- Products in effectiveness trials
- Trial design issues
- Scientific challenges
- WHO Microbicide Project
Overview

• HIV/AIDS pandemic
 – Accounts for more deaths than other infectious disease
 – 40 million people currently infected world wide
 – about 6 out of every 10 new infections are in women
 – nearly 5,000 women are infected with HIV daily
 – 90% of them in developing countries

• HIV preventive strategies
 – Abstinence, monogamy, condom use, reduction in number of sexual partners
 – diagnosis and treatment of sexually transmitted diseases
Women and HIV

Increasingly Female

- 67% of African cases in 15-24 year olds
- In sub-Saharan Africa, 13 women for every 10 infected men
- In South Africa - 1 in 4 women infected by 22
- In India - in 2004, 22% of cases in housewives with single partner

Married, monogamous

Mother

World Health Organization Department of Reproductive Health and Research
HIV interventions are often not feasible for many women

- Women with single partners can be exposed to HIV via their partners’ other sexual relationships
- Reduction of sex partners is not an option for commercial sex workers
- Many women do not have the power to insist on condom use
- Multiple sexual partners may be the only source of economic and social security
- Diagnosis and treatment of sexually transmitted infections are either unavailable or inadequate in many parts of the world, besides many infections in women are asymptomatic

World Health Organization Department of Reproductive Health and Research
What is a microbicide?

- Any compound that can be applied into the vagina or rectum before sex to kill, neutralize, or block HIV and other sexually transmitted infections
- To date, no microbicide is available
 - they are under development and/or investigation
Other Microbicide Features

- Microbicides are inserted by women and may not require active negotiation with male partner
- Some are contraceptive, others are not contraceptive
- Potential protection against a range of STIs
- Could be used alone or together with a physical barrier (condoms, cervical barriers) as adjunct or fall-back
- Effective immediately after insertion and remains effective for several hours
- Potential effectiveness for post-coital and rectal use
- Could be made available over-the-counter at low cost

Courtesy: Janneke van de Wijgert

World Health Organization Department of Reproductive Health and Research
How Microbicides Work (1)

- **Viral disruption/inactivation**

- **Prevention of other STDs**

- **physical barrier lubrication**

- **Maintenance of normal microflora and epithelial health**

Courtesy: Zeda Rosenberg, PhD
How Microbicides Work (2)

- Inhibition of HIV uptake by dendritic cells:
 - DC-SIGN mAbs
 - Mannan

- Inhibition of reverse transcriptase:
 - NRTIs - PMPA
 - NNRTIs - UC781, TMC 120, DABO, MIV 150

- Entry Inhibitors:
 - Polyanions
 - Coreceptor antagonists
 - Small molecule inhibitors
 - CD4 mAbs
 - BMS 806
 - T-20
 - Cyanovirin
 - Plant lectins

- Membrane Disruptive Agents:
 - C31G, SLS
 - Cyclodextrins

- Lumen
- Epithelium
- Stroma
Public Health Impact

• Research showed that offering more prevention choices results in more sex acts being protected and higher levels of condom use.

• Scientists at LSHTM calculated that 2.5 million infections could be averted over 3 years if a microbicide that is 60% effective were used by 20% of women in half of all sex acts that do not involve a condom. This would save society $2.7 billion in health care costs and $1 billion in productivity gains.
Product Selection Algorithm

Potential Microbicide

In Vitro anti-HIV Activity

High

Low

In Vitro Vaginal Toxicity

High

Low

In Vitro Genotoxicity

Positive

Negative

In Vivo Animal Vaginal Toxicity

High

Low

General Toxicology

Poor

Good

Animal Efficacy Studies (SIV/SHIV)

Laboratory strains
Clinical isolates/clades (R5)
Primary cells
Cervical/vaginal explants
Synergistic activity

Vaginal cell cytotoxicity
Lactobacilli
Pro-inflammatory potential

14-day Rabbit Vaginal Irritation Study

Safety Studies in Women

World Health Organization Department of Reproductive Health and Research

Courtesy: Polly Harrison
The Pipeline by Mechanism of Action

- Replication Inhibitors (5)
- Entry & Fusion Inhibitors (20)
- Adsorption Inhibitors (11)
- Surfactants (6)
- Acid Buffers (3)
- Vaginal Defense Enhancers (7)
- Devices (3)
- Uncharacterized Mechanisms (6)
- Multiple Mechanisms (1)

Courtesy: Polly Harrison

World Health Organization Department of Reproductive Health and Research
Scientific challenges
Basic science research (1)

• Cellular and molecular process at mucosal level not well understood → microenvironment
• Products with one mode of action → may have limited efficacy and potential for resistance
• products with uncharacterised mechanisms of action → cannot advance through the pipeline
• non-specific inhibition or blocking of receptor sites → potential toxicity
• combination products → which products?
• difficulties in formulation

World Health Organization Department of Reproductive Health and Research
Scientific challenges
Basic science research (2)

• Pre-clinical assessment was initially based on assays for contraceptive and therapeutic products
• need to develop in vivo testing assays, ex vivo and animal models relevant to microbicides
• different labs use different assay systems, thus difficulties in comparing results
• animal models do not capture relevant features of sexual transmission in humans
 – interpretation of animal data is complicated
 – viral stocks lose mucosal infectivity over time
Scientific challenges

Ideal formulation

• Maintenance of vaginal PH
• Chemical and physical stability
• Activity throughout shelf life
• odorless
• Non-irritating to genital epithelium
• Non-disruptive to innate vaginal microflora
• rapid and sustained release of active ingredient
• retention of active ingredients over time
Products in Clinical Research

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 1/2</th>
<th>Phase 2</th>
<th>Phase 2/2B</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidform™/ Amphora™ + Diaphragm</td>
<td>Invisible Condom™</td>
<td>Human monoclonal antibodies (C2F5, C2G12, C4E10)</td>
<td>BufferGel™ PRO 2000 (0.5%)</td>
<td>Carraguard®</td>
</tr>
<tr>
<td>Carraguard®</td>
<td>Praneem Polyherbal</td>
<td>PRO 2000 (0.5%) Tenofovir/ PMPA</td>
<td></td>
<td>Cellulose sulfate</td>
</tr>
<tr>
<td>Cellulose acetate phthalate</td>
<td></td>
<td>Protected lactobacillus in combination w/ BZK</td>
<td></td>
<td>PRO 2000 (0.5%, 2%)</td>
</tr>
<tr>
<td>Cellulose acetate phthalate 13%</td>
<td></td>
<td>Tenofovir/ PMPA</td>
<td></td>
<td>Savvy™/C-31G</td>
</tr>
<tr>
<td>Cellulose sulfate + Diaphragm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactin-V capsule</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lime Juice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polystyrene sulfonate (PSS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMC-120 Gel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMC-120 + Ring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UC-781</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPL7013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Courtesy: Polly Harrison
Phase III Clinical trials Endpoints

• primary endpoint for all is HIV

• secondary endpoints:
 – BV (BufferGel™, PRO 2000)
 – chlamydia (BufferGel™, Cellulose sulfate, PRO 2000, Savvy™)
 – genital ulcer disease (BufferGel™, PRO 2000)
 – gonorrhea (BufferGel™, Cellulose sulfate, PRO 2000, Savvy™)
 – HSV-2 (BufferGel™, PRO 2000)
 – syphilis (BufferGel™, PRO 2000)
 – trichomoniasis (BufferGel™, PRO 2000)

• 3 are contraceptive:
 – BufferGel™, Cellulose sulfate, Savvy™

Courtesy: Polly Harrison
Clinical Trial Phases

- **Phase I**
 - Initial trials in human, involving a few subjects
 - To evaluate the safety/acceptability of the product

- **Phase II**
 - Expanded safety/acceptability
 - To determine appropriate dosage
 - Proof-of-concept
 - IIa: efficacy and short term safety
 - IIb: efficacy, side effects and clinical toxicity

- **Phase III**
 - To determine efficacy
 - Large trial involving hundreds or thousands of people
Phase IIB/III TRIALS

- CONRAD Trial (Cellulose sulfate)
- HPTN 035 Trial (BufferGel & PRO 2000)
- MDP 301 Trial (0.5% & 2% PRO 2000)
- Carraguard Trial (Carrageenum)
- SAVVY Trial (C31G)
CONRAD TRIAL

- Phase III trial, to start in late 2004
- Randomized, triple-blind, placebo-controlled
- Two arms (6% cellulose sulfate and placebo)
- Sample size-2,574 HIV-negative women
- Sites
 - Chennai, India (one more site)
 - Cotonou, Benin
 - Bobo Dioulasso, Burkina Faso
 - Durban, South Africa
 - Kampala, Uganda
HPTN 035 TRIAL

• Phase II and IIb safety and effectiveness study
• Randomized, four-arm (2 active products, 2 control arms)
• Active arms-BufferGel and PRO 2000
• Control arms (placebo and No-gel arm)
• Sample size 3100 HIV-negative women
 – 800 women in the phase II portion
• Sites
 – Pune (India), Blantyare and Lilogwe (Malawi), Chitungwiza and Harare (Zimbabwe), Durban (South Africa), Lusaka (Zambia), Moshi (Tanzania)
MDP 301 TRIAL

• To start in 2005
• Phase III trial
• Sponsorship: UK MRC, DfID, Indevus
• Active products: 0.5% and 2% PRO 2000/5 gel
• Sample size-11,920 HIV-negative women
• Current Sites
 – Primary health care facilities in Durban, Johannesburg and Mtubatuba (South Africa)
 – Primary health care facilities in Mazabuka (Zambia)
 – Nakambala sugar estate (Mazabuka, Zambia)
 – HIV sero-discordant couples (Masaka, Uganda)
• Future sites?
 – Sex workers in Yaounde, Cameroon
 – Big Bend sugar estate, Swaziland

World Health Organization Department of Reproductive Health and Research
CARRAGUARD TRIAL

- Previously known as PC-515
- Phase III safety and effectiveness study
- Randomized, two-arms
- Products: Carraguard versus Methyl cellulose placebo
- Sample size 6,270 HIV-negative women
- Sites (all in South Africa)
 - Gugulethu (Cape Town)
 - Soshanguve (Pretoria)
 - Isipingo (Durban)
- Recruitment started in March 2004

World Health Organization Department of Reproductive Health and Research
SAVVY TRIAL

• Known as C31G
• Sponsorship: FHI, Biosyn/Cellegy & USAID
• Two Phase III trials in West Africa (Ghana and Nigeria)
• Products (C31G versus placebo)
• Sample size 4,400 HIV-negative women
• Sites
 – Kumasi and Accra (Ghana)
 – Lagos and Ibadan (Nigeria)
• Completion expected in mid-2006
Phase III Trials and US FDA

- Two years ago, US FDA was consulted by the HPTN
- Initial advice: 2 phase III trials at 2-sided 0.05 significance
- Disadvantages:
 - Large sample sizes of 16,000 people
 - Very expensive (20m-80m US dollars)
 - If initial study is significant, unethical to conduct the other
- Revised FDA position:
 - Equivalent of one and half trials (12,000 people)
 - Choice of control arms

World Health Organization Department of Reproductive Health and Research
Potential Mechanisms of effect of Microbicides and placebos

~ Antimicrobial effects
~ Physical Barrier effects
~ Lubrication effects
~ Other

Design to Address Multiple Mechanisms

Arms
- Active Microbicide
- Placebo Control
- Unblinded Control

Courtesy: Thomas Fleming, PhD

World Health Organization Department of Reproductive Health and Research
Choice of Control Arm

• Randomization
 – Ensures balance of factors related to individual risk and to patterns of condom and product use
 – Cannot balance changes of behaviour once study group has been revealed

• Require good masking (or blinding)

• Placebo-controlled double-blind trial
 – Preferred whenever feasible
 – Gives unbiased estimate of product effectiveness
Rationale for a No-Product Arm

• “Placebo” may have some activity
 - potential for activity due to low pH; preservatives; dilution; physical barrier
• Provides a comparator that reflects the “real world” effectiveness of the products (i.e., versus no gel at all).
 - takes into account potential changes in behavior associated with use or non-use of a microbicide product.
 - Incidence among women in no-product arm
• Allows for possibility or performing analyses of the potential effects of the placebo gel on HIV transmission.
No-product Arm?

• Essential when no placebo product available
 – Cannot rely on randomization and blinding to balance behaviours and condom use
 – Must collect high-quality, extensive and reliable data on product and condom use

• Analysis adjusted for reported behaviours
 – Expected misclassification dilutes estimated effect

• Two control groups?
 – Costly, potentially confusing,
HIV incidence in Active gel vs placebo vs no-product arm

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo = active = No-product (2%, 2%, 2%)</td>
<td>-Active not effective</td>
</tr>
<tr>
<td></td>
<td>-Placebo has no effect</td>
</tr>
<tr>
<td>Placebo > active</td>
<td>-Active is effective?</td>
</tr>
<tr>
<td>No-product = active</td>
<td>-Placebo could be harmful</td>
</tr>
<tr>
<td>(3%, 2%, 2%)</td>
<td></td>
</tr>
<tr>
<td>Placebo = active</td>
<td>-Active is effective</td>
</tr>
<tr>
<td>No-product > active</td>
<td>-placebo appears protective</td>
</tr>
<tr>
<td>(2%, 2%, 3%)</td>
<td>-ingredient in active is inactive</td>
</tr>
<tr>
<td>Placebo > active</td>
<td>-Active is effective</td>
</tr>
<tr>
<td>No-product > active</td>
<td>-Placebo has no effect</td>
</tr>
<tr>
<td>(3%, 2%, 3%)</td>
<td></td>
</tr>
</tbody>
</table>
Strength of Evidence

- Two independent studies at \(P < 0.05 \)
 - Desirable
 - Ethical Review Committees unlikely to approve
- Single study at \(P < 0.0013 \)
 - equivalent to two independent \(P < 0.05 \) studies
- Single \(P < 0.05 \) study may not convince
- When would a second study be no longer ethical? \(P < 0.05, 0.04, 0.03, 0.02, 0.01, \ldots \)?
Intermediate Trial Design

Phase 3 Trial Design

Further Studies

Positive

Courtesy: Thomas Fleming, PhD
World Health Organization Department of Reproductive Health and Research
Rationale for Phase II Run-In

- “Traditional” Phase II studies - expanded safety and proof of concept
- No proven surrogates for either one at this time
- Sample sizes as large as for a Phase III
- HPTN 035 – 800 women will be followed under a phase II safety design with a DSMB review at the end of 3 months of follow-up
- Phase II participants contribute to the Phase III effectiveness analyses
- Study operations are maintained at the participating study sites throughout the Phase II/III transition
WHO Microbicide Project

• **Main objective**
 – To accelerate the development and deployment of a safe, effective and accessible topical microbicide for use especially in developing countries

• **Specific objectives**
 – To conduct clinical trials of promising candidate microbicides in countries with a major or emerging HIV epidemic
 – To develop and/or strengthen the research capacity of clinical sites in developing countries to participate in microbicide research
 – To facilitate discussions on ethics and derive an international consensus on the scientific basis for regulatory decisions on microbicides

World Health Organization Department of Reproductive Health and Research
Research Capacity Strengthening for Microbicide Research

• Rationale:
 – many more microbicide leads going into human trials
 – few centers with experience on clinical trials in developing countries where microbicides are urgently needed
 – ensure the highest standards in the conduct of microbicide trials

• Selection of clinical sites interested in microbicide research

• needs assessment on research capacity

• capacity strengthening-staff training, facility upgrades, equipment, data management, networking

World Health Organization Department of Reproductive Health and Research
Ethics and Regulatory Issues

• Facilitate discussions on ethics
 – ethical problems and challenges of microbicide research

• derive international consensus on prerequisites for microbicide research and registration
 – different views on competing requirements of urgency and proof of safety and effectiveness of microbicides
 – what safety and effectiveness data will national drug regulatory authorities need prior to registration of a microbicide in their country
 – Several international and regional meetings held in Switzerland, Botswana, India

World Health Organization Department of Reproductive Health and Research
Acknowledgements

Colleagues in microbicide R&D committed to accelerating access to novel products

United States Agency for International Development for financial support