Introducing Hepatitis B Vaccine into National Immunization Programmes

Steven Wiersma
Training in Reproductive Health Research
Geneva 2006

New Vaccine Introduction

- Assess disease burden
- Assess effectiveness of intervention
- Address programmatic issues
- Assure sustainable vaccine supply

Hepatitis B Virus Infection Global Disease Burden

- 2,000 million have markers of current or past infection
- 350 million have chronic infection
 - 15%-25% will die from chronic liver disease (liver cancer and cirrhosis)
 - at least 1 million deaths per year

Geographic Distribution of Chronic HBV Infection

Effect of Routine Infant Immunization on the Prevalence of Chronic HBV Infection

				<u>C</u>	Chronic HBV infection		
Study	Year	No. Tested	Age (yrs)	Vaccine Coverage	Before Program	After Program	
Alaska	1995	268	1-10	96%	16%	0%	
Taiwan	1994	424	7-10	73%	10%	1.1%	
Samoa	1996	435	7-8	87%	7%	0.5%	
Lombok	1994	2519	4	> 90%	6.2%	1.9%	
Saipan	1994	200	3-4	94%	9%	0.5%	
Ponape	1994	364	3-4	82%	NA	1.0%	
Micronesia	1992	544	2	40%	12%	3.0%	

Liver Cancer Death Rates among 0-9 Year Old Children, 1974-1993, Taiwan

Hepatitis B Vaccination Targets

45th World Health Assembly, 1992

- By 1995 HepB vaccine introduced in countries with HBsAg prevalence ≥8%
- By 1997 in all countries

GAVI, 2000

- By 2002 HepB introduced in 80% of countries w/adequate vaccine delivery
- By 2007 in all countries

Slide Date: September 05

Countries where HepB not introduced in national immunization schedule, 2004

^{*} includes partial and among adolescents

Source: WHO/IVB database, 2005

192 WHO Member States. Data as of September 2005

Date of slide: 15 September 2005

Number of countries introduced HepB vaccine and global infant HepB3 coverage, 1989-2004

Programmatic Issues

- Schedule/Administration
- Formulations
- Cold chain
- Injection equipment/safety
- Vaccine wastage
- Revision of EPI forms and materials
- Training
- IEC needs
- Evaluation of programme impact

Hepatitis B Immunization Programs

Objective

Prevent chronic HBV infections

- prevent chronic liver disease
- reduce the reservoir for transmission of new infections

Age of Acquisition of Chronic HBV Infections in High Endemic Countries

Age of Acquisition

Perinatal

Young children

Adolescents/Adults

% of Chronic Infections

10-30

65-85

<5

Priority of Perinatal Hepatitis B Prevention

Issues to Consider

- 1. Relative contribution of perinatal transmission to overall hepatitis B disease burden
- % of HBsAg-positive pg women who are HBeAg-positive
- Rate of transmission: HBeAg-positive ~85%

HBeAg-negative ~10%

- 2. Feasibility of delivering the first dose at birth
- Most feasible in hospitals

Priority of Perinatal Hepatitis B Prevention

High proportion of chronic infections acquired perinatally (e.g., SE Asia)

- A birth dose should be given when feasible (e.g., in birthing hospitals)
- Efforts should be made to administer HepB vaccine to infants who deliver at home

Low proportion of chronic infections acquired perinatally (e.g., Africa)

 A birth dose may be considered after evaluating disease burden, cost-effectiveness, and feasibility

Options for Adding Hepatitis B Vaccine to Existing EPI Schedules

					HepB Options		
Age	Visit	Othe	er A	Intigens	I	II*	III*
Birth	0	BCG OP	VO			HepB	HepB
6 weeks	1	OP'	V1	DTP1	HepB/Combination	НерВ	Combination
10 weeks	2	OP'	V2	DTP2	HepB/Combination		Combination
14 weeks	3	OP'	V3	DTP3	HepB/Combination	HepB	Combination
9-12 mont	hs 4			Mea	sles		

^{*}schedule to prevent perinatal HBV infection

HepB/Hib Vaccine Administration

- IM injection:
 - anterolateral thigh (infants)
 - deltoid (older children)
- Can be safely given at the same time as other vaccines:
 - DTP, OPV, Hib/HepB, BCG, measles, yellow fever
- Injection equipment same as for DTP/Hib:
 - 1.0 or 2.0 mL syringe
 - 25 mm, 22 or 23 gauge needle

Available HepB Products

- Monovalent HepB (1, 2, 6, or 10 dose vials)
 - -Recombinant
 - -Plasma-derived (discontinued in 2003)
- Monovalent HepB in Uniject
- Hep B and DTP combo-pack (2 and 10 dose vials)
- DTP-Hep B (10 dose vials)
- DTP-Hep B + lyophilized Hib (2 dose vials)

Formulation Choices - Issues to Consider

- Monovalent vs. combination vaccines
- · Liquid vs. lyophilized vaccines (Hib)
- Recombinant vs. plasma-derived vaccines (HepB)
- Cost
- Available cold chain storage capacity
- Single vs. multi-dose vials
- Limited supplies of some desirable products

Hepatitis B Vaccine Formulations

Monovalent

- can be used for any dose in the HepB schedule
- must be used for vaccination at birth
- Combination (DTP-HepB, DTP-Hib-HepB, Hib-HepB)
 - can be used any time all antigens are indicated
 - cannot be used before 6 weeks of age (because of reduced DTP/Hib immunogenicity)

Types of Hepatitis B Vaccine

- Recombinant
 - -Prepared from HBsAg synthesized by yeast or mammalian cells
- ·Plasma-derived
 - -Prepared from HBsAg obtained from plasma of persons with chronic HBV infection
- Both have excellent safety and efficacy
- *Until recently, plasma-derived was cheaper
- Plasma-derived discontinued in 2003

Monovalent versus Combination Vaccines: Issues

Issue	Monovalent	Combination		
Costs	++ Vaccine	+++ Vaccine		
	++ Program	+ Program		
Injections	1 additional	No additional		
Flexibility	Increased	Less (no monovalent)		
Vaccine security	Problem	Problem not likely		
Cold chain	Increased	Modest increase		
Training	More demand	Less demand		
Local DTP production	Not a problem	Could displace		

UNICEF Hepatitis B Vaccine Prices, 2001

Vaccine	Type*	Doses	Price, US\$
HepB	R	6-20	0.26-0.54
HepB	PD	10	0.35
HepB (incl. syringe)	R	1	0.64-1.31
DTP+HepB (combo-pack)	R	10	0.48
DTP-HepB	R	10	1.10
DTP-HepB+Hib	R	2	3.50

^{*}R = recombinant; PD = plasma-derived

Cold Chain Issues

Introduction of HepB/Hib vaccines will require assessments at all administrative levels:

- to assure adequate cold chain storage capacity
- to assure policies and procedures are in place to prevent freezing vaccine

HepB Vaccine Storage Volumes (cm³/dose) *

	1 dose	2 dose	6 dose	10 dose
Vaccine	vials	vials	vials	vials
HepB monovalent	9.7	4.8	3.2	3.0
HepB (Uniject)	24.6			
HepB + DTP (combo-pack)				8.2
DTP-HepB (combined)				3.0
DTP-HepB+Hib		9.7		

^{*}vial plus packet containing vial plus other packaging

Single-Dose vs. Multi-Dose Vials

Single dose vials

- less wastage
- higher cost/dose

Multi dose vials

- more wastage
- lower cost/dose
- more storage volume
 less storage volume

