

Systematic reviews of observational data

Dr Ana Pilar Betrán Department of Making Pregnancy Safer World Health Organization

"Epidemiologist know a lot about the correct way to conduct a research study but less about how to review and synthesize data from multiple studies and this, I suggest, is a principal source of the public's confusion when faced with a new result from an epidemiological study"

Bracken MB. IJE 2001:954

"Resources are limited in developing countries particularly, and for this reason we need evidence-based information for decision making"

Outline of the presentation

- What is a systematic review
- What is an observational study
- Challenges of observational studies
- Challenges of systematic reviews of observational studies
- WHO Systematic Review of Maternal Mortality and Morbidity

What is a systematic review?

A review:

- clearly formulated question
- uses systematic and explicit methods to identify and collect relevant research
- uses systematic and explicit methods to select, critically appraise and analyse relevant research included.

What is a systematic review?

Statistical methods (meta-analysis) may or may not be used to summarise the results

of the included

studies

How much work is a systematic review?

~ 1139 hours

- ~ 30 person-weeks of full-time work
- 588 for protocol, searching and retrieval
- ✓ 144 for statistical analysis
- 206 for report writing
- 201 for administration

Source: Allen IE. JAMA, 1999;282:634

What are observational studies?

- Data from existing database
- Cross-sectional study
- Case series
- Case-control study
- Cohort study

Observational studies

Randomized controlled trials

Why do we need systematic reviews of observational studies?

- Test aetiological hypothesis
- Evaluation of interventions designed to prevent rare outcomes
- Evaluation if outcomes of interest are far in the future
- Evaluation of effectiveness in a community
- Public health complex interventions

MAOS are common

Type of article	Articles (n)
Meta-analysis of:	
Controlled trials	34
Observational studies	25
Methodological article	15
Tradicional review	15
Other	11

Source: Egger M. Systematic reviews in Health Care. Meta-analysis in context. BMJ Books. 2001

RCT

(Lack of precision)

Meta-analysis

More reliable estimates

Observational studies

(Confounding, bias)

Meta-analysis

More reliable estimates????

Confounding factors

Sexual activity during late Preterm birth pregnancy

Confounding factors

Cocaine use during pregnancy

Tobacco Alcohol Poor nutrition Psycosocial stress STI Economic deprivation

Preterm birth

The protective effect of beta-carotene that wasn't

Cohorts

Male health workers Social insurance, men Social insurance, women Male chemical workers Hyperlipidaemic men Nursing home residents

Trials

Male smokers Skin cancer patients (Ex)-smokers, asbestos workers Male physicians

There are examples of observational studies producing similar results of those from RCT

But observational studies will always have to deal with <u>bias</u> and <u>confounding</u> because the intervention was deliberately chosen and not randomly allocated

Benson and Hartz, NEJM, 2000;342:1878-86

					1.190
Treatment Evaluated	Outcome	a Manualana Anananana	OR and s	95% CI	en seguite
		0.10	1.0	0	10.00
		First	treatment S better	econd treat	ment
Nifedipine vs. control in	Mortality			bottor	
patients with CAD* Observational (30–60 mg)			1.1.1.1.1.1		2.1
Randomized, controlled		1	1		
(30–50 mg)					
CABG vs. PTCA in diabetic	Mortality				
patients* Observational					
Randomized, controlled				1	· . [
ABG vs. PTCA in patients at	Mortality				· · · ·
high risk* Observational	i de la fe	, I. ¹ .			
Randomized, controlled					
ABG vs. PTCA in patients at	Mortality				
low risk*	inortancy				
Observational Randomized, controlled				····•	
		a			
ABG vs. medical treatment in CASS patients	Mortality				
Observational					
Randomized, controlled					
ABG vs. medical treatment	Mortality				
in Duke study patients† Observational					
Randomized, controlled		a, ¹¹ a			
eta-blockers vs. control†	Mortality	. 1.			
Observational Randomized, controlled			•		

Concato et al., NEJM, 2000;342:1887-92

9

Department of Making Pregnancy Safer

This does not mean to return to narrative reviews

Benefits of MAOS:

- Systematic and explicit rules
- Statistical power
- Insight into variable interaction
- Detection of discrepancies
- Deepness into heterogeneity
- Identification of gaps in knowledge

Reporting of background should include:

- 1 Problem definition, hypothesis statement
- 2 Description of study outcome(s)
- 3 Type of exposure or intervention used
- 4 Type of study designs used
- 5 Study population

Reporting of search should include:

- 6 Qualifications of researchers
- 7 Search strategy including time period
- 8 Effort to include all available studies
- 9 Databases and registries searched
- **10** Searching software used
- **11** Use of hand searching
- **12** List of citations located and those excluded, including justification
- **13** Methods of addressing articles not published in English
- 14 Methods of handling abstracts and unpublished studies
- **15** Descriptions of any contact with authors

Reporting of methods should include:

- **16** Description of relevance/appropriateness of papers assembled for assessing the hypothesis to be tested
- **17** Rational for the selection and coding of data
- 18 Documentation about how data were classified and coded
- **19** Assessment of confounding
- 20 Assessment of study quality, including blinding of quality assessors; stratification or regression on possible predictors of study results
- **21** Assessment of heterogeneity
- 22 Description of statistical methods in sufficient detail to be replicated
- **23** Provision of appropriate tables and graphics

Reporting of results should include:

- 24 Graphic summarizing individual study estimates and overall estimate
- 25 Table giving descriptive information for each study included
- **26** Results of sensitivity testing (e.g. subgroup analysis)
- 27 Indication of statistical uncertainty of findings

Reporting of discussion should include:

- **28** Quantitative assessment of bias
- **29** Justification for exclusion
- **30** Assessment of quality of included studies

Reporting of conclusions should include:

- **31** Consideration of alternative explanations for observed results
- **32** Generalization of the conclusions
- **33** Guidelines for future research
- **34** Disclosure of funding source

Quality of reviews in Epidemiology Breslow R. AJPH, 1998;88:475-7

All 1995 issues of 7 widely read epidemiology journals were searched for reviews

29 reviews were found

Reviews following quality guidelines

Guideline	Yes (%)	Unable to determine (%)	No (%)
Search methods stated	6 (21)	1(3)	22(76)
Inclusion criteria reported	5(17)	4(14)	20(69)
Bias in selecting studies avoided	3(10)	26(90)	0(0)
Criteria for assessing validity reported	2(7)	15(52)	12(41)
Methods for combining findings reported	10(34)	6(21)	13(45)
Conclusions supported by data	24(83)	4(14)	1(3)

Search restriction:

General medical journal, 2001

Search Procedure	19 meta- analyses	13 systematic reviews
Numerous Databases Searched		
(versus just MEDLINE)	13 (68%)	6 (46%)
Additional Searches Conducted		
(e.g., manual search of reference	17 (89%)	10 (77%)
lists or textbooks)		
Gray Literature Searched (e.g., manual search of conference or dissertation abstracts)	5 (26%)	4 (31%)
Contacted Experts to Find Unpublished Data	7 (37%)	2 (15%)
Cochrane Databases Searched	8 (42%)	4 (31%)
All Methods Employed	4 (21%)	1 (8%)

Search restriction: General medical journal, 2001

Language Restriction	19 meta- analyses	13 systematic reviews
None	6 (32%)	1 (8%)
English plus other lang.	2 (11%)	0 (0%)
English only	7 (37%)	7 (54%)
Unclear	4 (21%)	5 (38%)
Attempted to include unpublished studies	7 (37%)	5 (38%)

Other citations:

- Mulrow CD. The medical review article: state of the science. Ann Intern Med 1987, 6:233-240.
- McAlister FA, Clark HD, van Walraven C et al. The medical review article revisited: has the science improved? *Ann Intern Med* 1999, 131:947-951
- Bracken MB. Commentary: towards systematic reviews in epidemiology. *IJE* 2001, 30:954-957.

Summary

- SR and MA of observational studies are as common as reviews of RCT
- Confounding and selection bias often distort the findings
- Danger in producing very precise but spurious results
- More is gained by examining heterogeneity

WHO Systematic review of incidence/prevalence of maternal mortality and morbidity 1997-2002

Objectives

- To provide a comprehensive, standardised and reliable tabulation of available data on maternal morbidity
- To provide up-to-date data for future maternal mortality estimates
- To provide case-fatality rates

WHO CODE

WHO CODE

WHO systematic review

WHO systematic review

MATERNAL MORTALITY (cont.)					
26a. Cause distribution of maternal mortality					
Condition	(i) WHO code	(ii) No. of deaths	(iii) Percentage		
26a.1)					
26a.2)					
26a.3)			.		
26a.4)					
26a.5)					
26a.6)					
26a.7)					

WHO systematic review

Regional distribution (n=2204)

Development status (n=2204)

Making a difference in countries

Results: methodological quality of reported data

	Morbidity	Mortality	Total
	(n = 3215)	(n = 335)	(n = 3550)
High	103	8	111
Medium	1670	250	1920
Low	1442	77	1519

Reported morbidities (n=3215)

- Hypertensive disorders of pregnancy (16.3%)
- Haemorrhage (11.1%)
 - postpartum 2.7%
 - antepartum / intrapartum
 2.2%
 - placenta praevia 1.8%
 - abruptio placenta 2.6%
 - other haemorrhage / unspecified - 1.8%
- Abortion (10.7%)
- Preterm delivery (8.3%)

- ✓Stillbirth (6.3%)
- ✓ Diabetes in pregnancy (4.4%)
- ✓Anaemia in pregnancy (4.3%)
- ✓Ectopic pregnancy (3.0%)
- ✓Perineal tears (2.6%)
- ✓PROM (2.6%)
- ✓Uterine rupture (2.1%)
- ✓Postpartum sepsis (1.6%)
- ✓Depression (1.9%)
- ✓Obstructed labour (1.8%)

Department of Making Pregnancy Safer

"And it was so typically brilliant of you to have invited an epidemiologist."

