CERN
from particle physics to healthcare

Manjit Dosanjh
Advisor to DG for Life Sciences
& International Organisations
CERN...

- Seeking answers to questions about the Universe
- Advancing the frontiers of technology
- Training the scientists of tomorrow
- Bringing nations together through science
CERN in Numbers

- 2600 staff
- 570 Fellows and Associates
- 7000 users

- Member States: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom.
- Observers: India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and Unesco
Our view of the Universe
X-Rays, the fastest technology transfer example

- On November 8, 1895 Röntgen discovered X-Rays
- On November 22, 1895 he takes the first image of his wife’s hand

Röntgen received the first Nobel prize in physics in 1901
MRI, Magnetic Resonance Imaging

The Nobel Prize in Physics 1952
Felix Bloch
Physicist Stanford
Edward M. Purcell
Physicist Harvard

The Nobel Prize in Physiology or Medicine 2003
Sir Peter Mansfield
Physicist Nottingham
Paul C. Lauterbur
Chemist Uni. Illinois
Key Area

• Imaging detectors for diagnostics
• Accelerators for hadron therapy
• Isotope production
• GRID applications for Health
Bio-medical applications of CERN technologies

• Some properties of HEP apparatus
• Objectives: Particle Physicist
 • Highest possible performance
 • Lab environment/physicist operated
 • Possible complex maintenance
 • Possible complex operation
 • Single unit production
 • Non commercial
 • Industry as a manufacturer only
 • Networked devices, specialist online

• Some properties of biomedical apparatus
• Objectives: Medical practitioners
 • Robustness
 • Non-specialist operated
 • Minimal maintenance
 • Simple to operate
 • Small series production
 • Commercial distribution
 • Industry as a partner
 •
Physics to medicine

Idea of PET

Photon detection used for calorimetry

CMS calorimeter

PET today

6.02.2008
Inject Patient with Radioactive Drug

- Drug is labeled with positron (β^+) emitting radionuclide.
- Drug localizes in patient according to metabolic properties of that drug.
- Trace (pico-molar) quantities of drug are sufficient.
- Radiation dose fairly small (<1 rem).

Drug Distributes in Body
PET: true events

Neutron-deficient isotope

\[p \rightarrow n + e^+ + \nu_e \]

Detector

511 keV annihilation photon

~180°

true coincidences (T)

(signal)
Similar challenges for PET and HEP detectors

- New scintillating crystals and detection materials
- Compact photo-detectors
- Highly integrated and low noise electronics
- High level of parallelism and event filtering algorithms in DAQ
- Modern and modular simulation software using worldwide recognized standards (GATE)
Crystal Clear Collaboration

- New scintillators:
 - LuAP, phoswich LuAP-LSO (CERN patent)
 - other crystals
- new photodetectors (Avalanche PhotoDiodes)
- new low noise front end electronics
- new intelligent DAQ systems with pipeline and parallelized architecture
- better simulation GEANT 4
- better reconstruction algorithms
1- Crystals

CMS PbWO$_4$ production

Crystal Clear LuAP production
The ClearPET™
LYSO/LuYAP Phoswich Scanner
A high Performance Small Animal PET System
Higher efficiency better spatial resolution

The Design
• 20 detector cassettes on the ring
• each cassette has 4 PM in line
• each PM has 64 photocathodes
• each photocathode reads 1 phoswich
• each phoswich has 2 crystals LYSO and LuYAP
• each crystal is 2 x 2 x 10mm³
• open gantry diameter adjustable 120 - 240mm
• rotation 360 degree

T_{cosine} resolution 2 ns FWHN
Spatial resolution 1.5 mm at centre
Peak sensitivity >4%

By Courtesy of Raytest, Germany
Dedicated breast PET detector allowing high sensitivity to the small tumor detection

- Spatial resolution 1-2 mm
- High counting sensitivity
- Short PET exams
- Compatible X-Ray mammography
- Compatible stereotactic biopsy

Technical characteristics:
- 6000 crystals 2x2x20 mm
- Avalanche Photodiodes (APD)
- Low noise electronics
- High rate data acquisition
- Spatial resolution 1-2 mm
- Breast and axilla region
What is Medipix?

The Medipix is an electronic chip similar to the electronic imaging chip in a digital camera. One difference is that the Medipix chip is sensitive to x-rays instead of visible light. What is unique about the Medipix chip is that it can create the first true colour images with x-rays. Thus, it permits us to move from black and white x-ray images to full colour x-ray images. The chip also can be read out very rapidly. This allows the use the chip for colour x-ray digital movies or for fast colour x-ray CT scans.
MEDIPIX: Allows counting of single photons in contrast to traditional charge integrating devices like film or CCD

- High Energy Physics original development: Particle track detectors
- Main properties:
 - Fully digital device
 - Very high space resolution
 - Very fast photon counting
 - Good conversion efficiency of low energy X-rays
Applications using Medipix2

- Applications: Adaptative optics, X-ray diffraction, Micro-radiography, Neutron imaging, Computed tomography, Autoradiography, Gamma imaging, Electron microscopy, energy weighting, In vivo optical and radionuclide imaging, Micro-patterned gas detectors, Mammography...

X-ray image of a house fly (CERN)

Electron microscopy: Rotavirus with 1.6 (left) and 160 (right) e-/pixel, equivalent to: 0.04 e-/Å² at specimen (left) and 4 e-/Å² (right) (MRC, Cambridge)

Neutron imaging: Photograph and tomographic 3D reconstructions of a tooth (IEAP, Prague)

Micro-radiography: Assembled radiograph of a termite. Real size of the image is approximately 1.4 mm x 1.7 mm (IEAP, Prague)

http://www.cern.ch/MEDIPIX
5- Simulation

Higgs event at LHC (CMS) with Geant4

ClearPET with GATE: Geant4 Application for Tomographic Emission
Multi-modality imaging

Primary lung cancer imaged with the SMART scanner. A large lung tumor, which appears on CT as a uniformly attenuating hypodense mass, has a rim of FDG activity and a necrotic center revealed by PET.
Hybrid machines:

GE: SPECT/CT

Philips: PET/CT
Use of Accelerators for cancer treatment
Cancer

Ideal cancer treatment would be to eliminate all tumour cells without affecting any normal cells

Physics: 100% of the dose on target
0% of the dose in surrounding healthy tissues or critical organs

Biology: differential effect
kill 100% of cancer cells
"protect" normal cells

Radiation Therapy is non-invasive, has short-term side effects and is used to cure about 50% of all cancers with 5% of the total cancer treatment budget
Radiotherapy in the 21st Century

- RT is, nowadays, the least expensive cancer treatment method
- There is no substitute for RT in the near future
- The rate of patients treated with RT will likely increase in the years to come

Hadrontherapy vs. radiotherapy

- Tumours close to critical organs
- Tumours in children
- Radio-resistant tumours

Photons and Electrons vs. Hadrons

- Physical dose high near surface
- DNA damage easily repaired
- Biological effect lower
- Need presence of oxygen
- Effect not localised

- Dose highest at Bragg Peak
- DNA damage not repaired
- Biological effect high
- Do not need oxygen
- Effect is localised
Considerations for ion beam treatment

- Deep seated tumour
- Hypoxic tumour
- Tumour close to critical organ(s)
- Tumour in young children
Comparative Treatment Planning: Large Skull Base Chordoma

4 photon fields with x-rays 2 fields with carbon ions
The PIMMS Collaboration

- Collaboration was formed in 1996 following an agreement between Med-AUSTRON (A) and TERA (I)
- CERN agreed to host and support the study in PS-Division
- The study was later joined by ONKOLOGY 2000 (CZ)
- Close contacts were kept with GSI (D)
- Work started in January 1996 and continued for 4 years.
- Final report is now available (CD ROM; CERN Yellow Report)
PIMMS at CERN in 1996 - 2000

CERN–TERA–MedAustron Collaboration for optimized medical synchrotron

400 MeV/u synchrotron

- Sextupole vert. chromaticity
- Sextupole horiz. chromaticity
- RF cavity
- Resonance sextupole
- Betatron core
- Injection septum
- Extraction septum
- Sextupole vert. chromaticity
- Sextupole horiz. chromaticity
- Electrostatic septum

Circuit Parameters:
- Circumference: $C = 76.84$ m
- Tune horizontal: $Q_x = 1.67$
- Tune vertical: $Q_z = 1.72$

Proton and Ion Medical Machine study
5. In-beam-PET for Quality Assurance of treatments

On-line determination of the dose delivered
First time in 110 years!

Modelling of beta\(^+\) emitters:
- Cross section
- Fragmentation cross section
- Prompt photon imaging
- Advance Monte Carlo codes
Hadrontherapy goals

- Provide the irradiation technology and the detection systems to optimally use the advantageous properties of heavy charged particles in external radiotherapy

- Optimize dose to tumour conformity by beam scanning and adaptation of the delivery to the organ motion

- Treat patients and perform clinical trials using low-LET (p, He) and high-LET (C, O) beams

- Conduct technical, physical and clinical R+D
ENLIGHT: European Network for Light Ion Therapy

- Creation of common interdisciplinary environment
- Define and Collaborate in areas needing further research at the European level
- Profit from each others experience in building, managing, operating
- Reduce Duplication, Increase Quality, profit from best ideas, concepts
- Creation of maximum possible uniformity
- Inter-facilities uniformity and comparison
- Ease of exchange of information.
Production of isotopes
ISOTOPES IN MEDICINE

DIAGNOSIS

<table>
<thead>
<tr>
<th>in vitro</th>
<th>in vivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹⁴C</td>
<td>⁹⁹Mo-⁹⁹ᵐTc</td>
</tr>
<tr>
<td>³H</td>
<td></td>
</tr>
<tr>
<td>¹²⁵I</td>
<td></td>
</tr>
<tr>
<td>others</td>
<td></td>
</tr>
<tr>
<td>¹²³I</td>
<td>²⁰¹Tl</td>
</tr>
<tr>
<td>¹¹¹In</td>
<td>¹⁵³Sm, ¹⁸⁶Re</td>
</tr>
<tr>
<td>⁶⁷Ga</td>
<td>¹⁸⁸W-¹⁸⁸Re</td>
</tr>
<tr>
<td>⁸¹Rb-⁸¹ᵐKr</td>
<td>¹⁶⁶Ho, ¹⁷⁷Lu, others</td>
</tr>
<tr>
<td>others</td>
<td>-emitters: ²²⁵Ac-²¹³Bi</td>
</tr>
<tr>
<td>β⁺ emitters for PET</td>
<td></td>
</tr>
<tr>
<td>¹⁸F, ¹¹C, ¹³N, ¹⁵O</td>
<td>²¹¹At, ²²³Ra</td>
</tr>
<tr>
<td>⁸⁶Y, ¹²⁴I</td>
<td>¹⁴⁹Tb</td>
</tr>
<tr>
<td>⁶⁸Ge-⁶⁸Ga</td>
<td>e⁻-emitters: ¹²⁵I</td>
</tr>
<tr>
<td>⁸²Sr-⁸²Rb</td>
<td></td>
</tr>
</tbody>
</table>

THERAPY

<table>
<thead>
<tr>
<th>internal</th>
<th>external</th>
</tr>
</thead>
<tbody>
<tr>
<td>systemic</td>
<td>sources</td>
</tr>
<tr>
<td>¹³¹I, ⁹⁰Y</td>
<td>sealed sources ¹⁹²Ir, ¹⁸²Ta, ¹³⁷Cs</td>
</tr>
<tr>
<td>¹⁵³Sm, ¹⁸⁶Re</td>
<td>many others needs for brachytherapy: ¹⁰³Pd, ¹²⁵I</td>
</tr>
<tr>
<td>¹⁸⁸W-¹⁸⁸Re</td>
<td>many others stents ³²P and others seeds ⁹⁰Sr or ⁹⁰Y, others</td>
</tr>
<tr>
<td>¹⁶⁶Ho, ¹⁷⁷Lu, others</td>
<td>applicators ¹³⁷Cs, others</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tele radio</th>
</tr>
</thead>
<tbody>
<tr>
<td>⁶⁰Co</td>
</tr>
</tbody>
</table>

γ-knife ¹³⁷Cs blood cell irradiation
Terbium produced with 1 GeV protons + ISOLDE

Tumour

No tumour after treatment with $^{149}\text{Terbium}$

Experimental evidence of the usefulness of immunoconjugates for micro-metastases

ISOLDE allows the production of novel isotopes
Grids and e-health
LHC data challenge

• 40 million collisions per second

• After filtering, 100 collisions of interest per second

• \(10^{10}\) collisions recorded each year

\~10\ Petabytes/year of data
\~10 000 times the world annual book production,
\~20km CD stack
The Web

- Was a response to the needs of a distributed collaborating community

- And saved time and effort in fetching information from other places

- It made sharing information so much easier
The GRID

The Aim of the GRID is to give access,
again easily and transparently,
Not only to simple information,
But also to all of the computing resources and storage distributed around the world.
The User connects to his "Virtual Laboratory" or "Workbench Environment"

- Mobile Access
- Workstation
- Visualising

Supercomputer, PC-Cluster

Data-storage, Sensors, Experiments, Grid enabled Applications

Internet, networks

Workstation

Visualising

Mobile Access
MammoGrid Objectives

- Acquisition of large sample of mammograms
- Standardization of mammograms
- Annotation of mammograms by humans as well as CADe software
- Distributed data management system, cross-institute, cross-country queries
- Sharing of computing resources for the purpose of optimizing data storage and execution of computing-intensive algorithms
- Proof of concept with active clinical participation
MammoGRID

A pan-European distributed database of mammography images using GRID technologies

- To manage health care information for screening
- To assist health operators in their work environment and exchange data and practices
- To integrate latest technical developments in clinical practices
- 2 Main pilot applications:
 - CADe for quality controls (DICOM standards, GRID compliant, SMF Software)
 - Breast Density measurements

At work at Cambridge Hospital

32 MB / Image 2 x 2 images: 128MB per visit
400 TB / year of information to be preserved for UK screening
Breast tumours: 24% not visible at screening, 80% of biopsies are negative
Mammograms have different appearances, depending on image settings and acquisition systems.

The Grid links a large federated database of normalised digital mammograms shared initially by 4 hospitals.

6.02.2008

WHO-Reproductive Health
Health-e-Child on a slide