Case-control studies

Hans Wolff

Unité d'épidémiologie Populationnelle, Département de médecine communautaire et de premier recours

Hans.Wolff@hcuge.ch

Outline

- Case-control study
- Relation to cohort study
- Selection of controls
- Sampling schemes of controls

Case-control studies (CCS)

Case-control studies (CCS)

Did they were exposed or not ?

1. Example: Passive Smoking & Breast Cancer

	Cases		Controls		Odds
Smoking	n	%	n	%	Ratio
Unexposed	40	22.2	234	38.7	1.0
Passive	140	77.8	370	61.3	2.2

Presence or absence of disease ...

... is fixed by design in case-control studies.

- Cases have the disease
- Controls don't.
- We can NOT compute a risk of disease
- We CAN compute prevalence of exposure in cases and controls

Passive Smoking & Breast Cancer

Cases: all incident breast cancer in Geneva

.

- Controls: random sample of the Geneva female population
- Exposure: questionnaire on lifetime history of exposure to passive smoke

Have you ever been exposed?

- to passive smoking at least 1 hour per day for at least 1 year? (Yes / No)
- At home ? At work ? During leisure time ?
- If yes, describe each episode of exposure
 Duration, who, size of the room, etc...
 - Unexposed = never active, never passive

What should be always true for a case-control study?

- 1. Cases and controls are randomized with respect to exposure.
- 2. Cases are a representative sample of all cases in the general population
- 3. Controls are a representative sample of the general population
- 4. Cases and controls have the same population of origin
- 5. Always start with some cases, then identify their valid controls

Fundamental conditions for the validity of this case-control design

Cases and controls :

- Originate from Geneva resident, <75 y.
- are sampled independently of their exposure to passive smoke

Solution:

- All incident cases over a given time period
- Controls are a random sample of population

Case Definition

- Incident (= newly diagnosed)
- Between 1/1/92 and 12/31/93
- Resident of Geneva
- Aged < 75 yrs</p>
- Identified: all pathology labs of Geneva

Control Definition

- Never diagnosed with breast cancer
- Between 1/1/92 and 12/31/93
- Resident of Geneva
- Aged < 75 yrs</p>
- Stratified random sample
 - Population controls
 - Why not use hospital controls?

Prevalence of Passive Smoking

	Cases	Controls
Smoking	n	n
Unexposed	40	234
Passive	140	370

The proportion of passive smoker cases is...

Prevalence of Passive Smoking

	Cases		Controls	
Smoking	n	%	n	%
Unexposed	40	22.2	234	38.7
Passive	140	77.8	370	61.3

The odds of passive smoking in CASES is...

 $1. \left(\frac{140}{40} \right) = 3.5 \quad 3. \left(\frac{140}{180} \right) = 77.8$

 $2.\left(\frac{77.8}{22.2}\right) = 3.5 \quad 4.\left(\frac{140}{77.8}\right) = 1.8$

5. Answers 1 or 2

WHO- Postgraduate course 2008 – CC studies

Odds of Passive Smoking in CASES

Smoking history	Ν	%
Unexposed	40	22.2
Passive	140	77.8
Total	180	100.0
Odds =	140/40=	77.8/22.2=
Odds =	3.5	3.5

Odds of Passive Smoking in CONTROLS

Smoking history	Ν	%
Unexposed	234	38.7
Passive	370	61.3
Total	604	100.0
Odds =	370/234=	61.3/38.7=
Odds =	1.6	1.6

AR in case-control study?

Recall

AR_{duration} = Risk (E+) - R(E-) Since risk cannot be computed directly from a casecontrol study, AR cannot be computed either.

RR in case-control study?

RR = Risk(E+) / R(E-)

Since risk cannot be computed directly from a case-control study, RR cannot be computed either

Odds Ratio of Passive Smoking

Interpretation of the Odds Ratio (1)

 The odds of being a passive smoker are 2.2 greater in breast cancer cases than in population controls.

Alternatively:

 The odds of breast cancer is 2.2 greater in those exposed to passive smoke than in unexposed.

WHO- Postgraduate course 2008 – CC studies

Imagine ...

you could have done the perfect cohort study instead of the case-control study

Odds Ratio of Breast Cancer

Breast Cancer	Passive Smokers	Unexposed
Present (A)	140	40
Absent (B)	55,360	35,060
Odds (A/B)	0.00253	0.00114
Odds Ratio	2.2	1.0 (ref)
	Your	nterpretation

Identity of Odds Ratio

.

Case-control study:

Odds ratio of passive smoking = 2.2

Cohort study:

- Odds ratio of breast cancer = 2.2
 - Same interpretation

 Identical Odds Ratio in the cohort and in the case-control studies.

 F_n = fraction included into the sample

Relation of Case-Control to Cohort Studies

.

- In a case-control study:
 - CASES are sampled among people in the unexposed and passive smokers cohorts who did develop breast cancer
 - CONTROLS are sampled among people in the unexposed and passive smokers cohorts who did **not** develop breast cancer

= 2.2

Odds Ratio and Relative Risk

• Relative Risk =
$$\begin{pmatrix} \frac{140}{55,500} \\ \frac{40}{35,100} \end{pmatrix} = 2.2$$

Note effect of rare disease on denominators

$$= \underbrace{\begin{pmatrix} 140/55,360\\ 40/35,060 \end{pmatrix}}$$

Interpretation of the Odds Ratio (2)

 The ODDS of breast cancer is 2.2 greater in those exposed to passive smoke than in unexposed.

Alternatively:

 The **RISK** of breast cancer is 2.2 greater in those exposed to passive smoke than in unexposed.

Equivalence OR and RR

The OR is a good estimation for the RR if :

the prevalence of the illness is low (<10%)

Comparison of the OR and RR

Illness with low prevalence

	Cases (M+)	Controls (M-)	n
Exposed (E+)	2	98	100
non-exposed (E-)	1	99	100
Total	3	197	

$$RR = \frac{\frac{2}{100}}{\frac{1}{100}} = 2 \qquad OR = \frac{\frac{2}{1}}{\frac{98}{99}} = 2.02$$

Comparison of the OR and RR

Illness with high prevalence

	Cases (M+)	Controls (M-)	n
Exposed (E+)	50	50	100
Non-exposed (E-)	25	75	100
Total	75	125	

$$RR = \frac{50 / 100}{25 / 100} = 2 \qquad OR = \frac{50 / 25}{50 / 75} = 3$$

Advantages of Case-Control Studies (1)

- Less expensive ...
- Require smaller sample sizes ...
- Shorter duration ... than prospective study
- Study multiple risk factors for 1 disease
- Easily reproduced in different populations by different investigators

Disadvantages of Case-Control Studies (1)

 Information about exposure is often obtained after the diagnosis is done

.

- Example: diet, physical activity
- Dependent on the subject's memory, which may be affected by the disease

Disadvantages of Case-Control Studies (2)

Population of origin for cases is difficult to define precisely.

.

- Difficult to identify appropriate control group
- Does not provide estimate of risks and attributable risk