Case-control studies

Hans Wolff

Unité d'épidémiologie Populationnelle, Département de médecine communautaire et de premier recours

Hans.Wolff@hcuge.ch
ROCH

Outline

- Case-control study
- Relation to cohort study
- Selection of controls
- Sampling schemes of controls

Case-control studies (CCS)

Case-control studies (CCS)

Did they were exposed or not ?

1. Example: Passive Smoking \& Breast Cancer

Cases Controls Odds

Smoking n \%

$40 \quad 22.2$
$234 \quad 38.7$
1.0
Passive
14077.8
$370 \quad 61.3$
2.2

Case-Control Design

SAMPLE

BC Cases
 180

Passive Non-exposed Smokers $140 \quad 40$

Controls

 604Passive Smokers

$$
370 \quad 234
$$

Presence or absence of disease ...

... is fixed by design in case-control studies.

- Cases have the disease
- Controls don't.
- We can NOT compute a risk of disease
- We CAN compute prevalence of exposure in cases and controls

Passive Smoking \& Breast Cancer

- Cases: all incident breast cancer in Geneva
- Controls: random sample of the Geneva female population
- Exposure: questionnaire on lifetime history of exposure to passive smoke

Have you ever been exposed?

- ... to passive smoking at least 1 hour per day for at least 1 year? (Yes / No)
- At home ? At work ? During leisure time ?
- If yes, describe each episode of exposure - Duration, who, size of the room, etc...
- Unexposed = never active, never passive

What should be always true for a case-control study?

1. Cases and controls are randomized with respect to exposure.
2. Cases are a representative sample of all cases in the general population
3. Controls are a representative sample of the general population
4. Cases and controls have the same population of origin
5. Always start with some cases, then identify their valid controls

Fundamental conditions for the validity of this case-control design

Cases and controls:

- Originate from Geneva resident, <75 y.
- are sampled independently of their exposure to passive smoke

Solution:

- All incident cases over a given time period
- Controls are a random sample of population

Case Definition

- Incident (= newly diagnosed)
- Between 1/1/92 and 12/31/93
- Resident of Geneva
- Aged < 75 yrs
- Identified: all pathology labs of Geneva

Control Definition

- Never diagnosed with breast cancer
- Between 1/1/92 and 12/31/93
- Resident of Geneva
- Aged < 75 yrs
- Stratified random sample
- Population controls
- Why not use hospital controls?

Prevalence of Passive Smoking

Cases Controls
 n
 n

Smoking

Unexposed
 Passive
 $$
\begin{array}{rr} 40 & 234 \\ 140 & 370 \end{array}
$$

 40

 40

 234

 234

 140

 140

 370

 370}
The proportion of passive smoker cases is...

$$
\begin{array}{ll}
\text { 1. }\left(\frac{40}{234}\right) & \text { 4. }\left(\frac{370}{234}\right) \\
\text { 2. }\left(\frac{140}{40}\right) & \text { 5. }\left(\frac{370}{604}\right)
\end{array}
$$

Prevalence of Passive Smoking

Cases
 Smoking
 Unexposed
 Passive
 $$
\begin{array}{rccc} 40 & 22.2 & 234 & 38.7 \\ 140 & 77.8 & 370 & \mathbf{6 1 . 3} \end{array}
$$

 40

 40

 22.2

 22.2

 234

 234

 38.7

 38.7

 140

 140

 77.8

 77.8

 37061.3

 37061.3}
The odds of passive smoking in CASES is...

$$
\begin{array}{ll}
\text { 1. }\left(\frac{140}{40}\right)=3.5 & \text { 3. }\left(\frac{140}{180}\right)=77.8 \\
\text { 2. }\left(\frac{77.8}{22.2}\right)=3.5 & \text { 4. }\left(\frac{140}{77.8}\right)=1.8
\end{array}
$$

5. Answers 1 or 2

Odds of Passive Smoking in CASES

Smoking history

Unexposed	40	22.2
Passive	140	77.8
Total	180	100.0
Odds $=$	$140 / 40=$	$77.8 / 22.2=$
Odds $=$	3.5	3.5

Odds =

3.5

Odds of Passive Smoking in CONTROLS

Smoking history	N	\%
Unexposed	234	38.7
Passive	370	61.3
Total	604	100.0
Odds $=$	$370 / 234=$	$61.3 / 38.7=$
Odds $=$	$\mathbf{1 . 6}$	$\mathbf{1 . 6}$

AR in case-control study?

Recall
$A R_{\text {duration }}=\operatorname{Risk}(E+)-R(E-)$
Since risk cannot be computed directly from a casecontrol study, AR cannot be computed either.

RR in case-control study?

$$
R R=\text { Risk }(E+) / R(E-)
$$

Since risk cannot be computed directly from a case-control study, RR cannot be computed either

Odds Ratio of Passive Smoking

Group Odds Odds Ratio

Cases
 3.5
 $$
\left(\frac{3.5}{1.6}\right)=\mathbf{2 . 2}
$$
 Controls 1.6
 $$
\left(\frac{1.6}{1.6}\right)=\mathbf{1 . 0}
$$

Reference

Interpretation of the Odds Ratio (1)

- The odds of being a passive smoker are 2.2 greater in breast cancer cases than in population controls.

Alternatively:

- The odds of breast cancer is 2.2 greater in those exposed to passive smoke than in unexposed.
- WHY ?

Imagine ...

Cohort Design (Risk period: $\mathbf{2}$ yrs)

Female Population of Geneva

Passive Smokers 55,500

Breast
Cancer
140

No Breast
Cancer
55,360

Non-exposed 35,100

Breast
Cancer
40

No Breast
Cancer
35,060

Odds Ratio of Breast Cancer

Passive
 Breast Cancer Smokers
 Unexposed
 40
 35,060

 Present (A)

 Present (A)

 Absent (B)

 Absent (B)
 55,360
 140

Odds (A/B) $0.00253 \quad 0.00114$
Odds Ratio

Your interpretation?

Identity of Odds Ratio

- Case-control study:
- Odds ratio of passive smoking $=2.2$
- Cohort study:
- Odds ratio of breast cancer $=2.2$
- Same interpretation
- Identical Odds Ratio in the cohort and in the case-control studies.

Female Population of Geneva

Passive Smokers〈 55,500 \

Non-exposed ไ 35,100 \

Breast	No. Breast.	Breas	No. Breast
Cancer	Cancer	Cancer	Cancer
140	55,360	40	35,060
V	V	V	V
$\mathrm{F}_{1}=1.0$	$\mathrm{F}_{2}=0.005$	$\mathrm{F}_{3}=1.0$	$\mathrm{F}_{4}=0.005$

Breast Cancer
\ 180 \
Passive Non-exposed Smokers

140
40
$F_{n}=$ fraction included into the sample

Relation of Case-Control to Cohort Studies

- In a case-control study:
- CASES are sampled among people in the unexposed and passive smokers cohorts who did develop breast cancer
- CONTROLS are sampled among people in the unexposed and passive smokers cohorts who did not develop breast cancer

Odds Ratio and Relative Risk

- Relative Risk $=\left(\frac{140 / 55,500}{40 / 35,100}\right)=2.2$

Note effect of rare disease on denominators

- Odds Ratio

$$
=\left(\frac{140 / 55,360}{40 / 35,060}\right)=2.2
$$

Interpretation of the Odds Ratio (2)

- The ODDS of breast cancer is 2.2 greater in those exposed to passive smoke than in unexposed.

Alternatively:

- The RISK of breast cancer is 2.2 greater in those exposed to passive smoke than in unexposed.

Equivalence $O R$ and $R R$

The OR is a good estimation for the RR if :
the prevalence of the illness is low ($<10 \%$)

Comparison of the OR and RR

Illness with low prevalence

	Cases (M+)	Controls (M-)	\boldsymbol{n}
Exposed (E+)	2	98	100
non-exposed (E-)	1	99	100
Total	3	197	
$R R=\frac{2 / 100}{1 / 100}=2 \quad$ OR $=\frac{2 / 1}{98 / 99}=2.02$			

Comparison of the OR and RR

IIIness with high prevalence

	Cases (M+)	Controls (M-)	\boldsymbol{n}
Exposed (E+)	50	50	100
Non-exposed (E-)	25	75	100
Total	75	125	

$$
\mathrm{RR}=\frac{50 / 100}{25 / 100}=2 \quad \mathrm{OR}=\frac{50 / 25}{50 / 75}=3
$$

Advantages of Case-Control Studies (1)

- Less expensive ...
- Require smaller sample sizes ...
- Shorter duration ... than prospective study
- Study multiple risk factors for 1 disease
- Easily reproduced in different populations by different investigators

Disadvantages of Case-Control Studies (1)

- Information about exposure is often obtained after the diagnosis is done
- Example: diet, physical activity
- Dependent on the subject's memory, which may be affected by the disease

Disadvantages of Case-Control Studies (2)

- Population of origin for cases is difficult to define precisely.
- Difficult to identify appropriate control group
- Does not provide estimate of risks and attributable risk

