Cohort studies

Hans Wolff
 Unité d'épidémiologie Populationnelle,
 Département de médecine communautaire et de premier recours
 Hans.Wolff@hcuge.ch
 Hôpitaux Universitaires de Genève

Cohort study (CS)

hypothesis
T_{2}

Cohort study (CS)

What is the outcome?

T_{2}

Cohort study (CS)

What is the outcome?

T_{2}

Outline

- Working Example

- Welsh Nickel Workers Study
- Description of the study and raw data in...
- Breslow, N.E., Day N.E. Statistical Methods in Cancer Research. IARC, 1987:369-74

Cohort Design

SOUTH WALES REFINERY WORKERS

Exposed to Nickel 250

Respiratory Cancer 100150

Unexposed to Nickel 450

Respiratory Cancer

90

No Respiratory
Cancer
360

Example

250 Exposed 450 Unexposed To Nickel To Nickel

Respiratory Cancer 10090
Person-years
4,100
11,000
Incidence Rate
0.024/yr
0.008/yr

Relative Incidence rate
3.0

Attributable Risk
0.016/yr

Study design

- Population: a Nickel factory of South Wales
- Nickel production by decomposition of gaseous nickel compounds
- Exposure: according to information on jobs at high risk of exposure held from 1902 to 1934
- Risk period: count cases of RC* between April 1934 to December 1981
- Outcome: respiratory, mostly lung and nasal cancer
* RC = respiratory cancer

Study design

Exposure Period

Risk
Period

190219251934个
Need to be employed before 1925

Which is a fundamental condition for the validity of this cohort design ?

- Subjects need to be:

1. A random sample of the population?
2. At risk of developing lung or nasal cancer ?
3. Unlikely to get colon cancer ?
4. Randomized to nickel exposure ?
5. Willing to answer questionnaires for many years ?

"At risk of Respiratory Cancer"

- Never had respiratory cancer: exclude prevalent cases
- Still have two lungs ... and a nose: exclude subjects who cannot travel from the denominator to the numerator

"Incident Respiratory Cancer"

- Incident = "newly diagnosed"
- Between April 1,1934 and December 31,1981
- Risk Period = 47 years
- Employed in the factory before 1925

What is the risk of respiratory cancer in this study ?

1. Probability of developing RC per 100,000 workers and per year
2. Probability of developing RC over 47 years
3. The excess probability of RC due to exposure
4. The ratio of the probability of RC in exposed over the probability of RC in unexposed
5. A synonymous for the odds of RC

Cohort Design

SOUTH WALES REFINERY WORKERS

Exposed to Nickel 250

Respiratory Cancer 100150

Unexposed to Nickel 450

Respiratory Cancer

90

No Respiratory
Cancer
360

Risk of respiratory cancer in unexposed

Unexposed to Nickel

Respiratory Cancer
Total
Person-years

90

450
11,000

Risk =
Interpretation:

What is the risk of respiratory cancer in unexposed ?

$$
\text { 1. }\left(\frac{90}{450}\right) \text { 2. }\left(\frac{90}{450-90}\right) \text { 3. }\left(\frac{450-90}{450}\right)
$$

$$
\text { 4. }\left(\frac{90}{11,000}\right) \text { 5. }\left(\frac{90}{11,000-90}\right)
$$

Calculating Risk in Unexposed

Risk $_{\text {time }}=\left(\frac{\text { New events }}{\text { Population "at risk" at baseline }}\right.$

$$
=0.2=20 \%
$$

Risk in Unexposed

- Probability of developing a respiratory cancer in workers unexposed to nickel is 20% over 47 years

Cohort Design

SOUTH WALES REFINERY WORKERS

Exposed to Nickel 250

Respiratory Cancer 100150

Unexposed to Nickel 450

Respiratory Cancer

90

No Respiratory
Cancer
360

Risk of respiratory cancer in exposed to nickel

Exposed to
 Nickel

Respiratory Cancer
Total
Person-years
Risk =
Interpretation:

100
250
4,100

Calculating Risk in Exposed

Risk $_{\text {time }}=\left(\frac{\text { New events }}{\text { Population "at risk" at baseline }}\right)$

Risk $_{47 \text { yrs }}=\left(\frac{100 \text { cases of } R C}{250 \text { subjects }} \begin{array}{c}\text { free of RC }\end{array}\right)=0.4=40 \%$

Risk in Exposed

- Probability of developing a respiratory cancer in workers exposed to nickel is 40% over 47 years

What is an incidence rate of respiratory cancer in this study?

1. Probability of developing RC per 100,000 workers and per year
2. Probability of developing RC over 47 years
3. The excess probability of RC due to exposure
4. The ratio of the probability of disease in exposed over the probability of disease in unexposed
5. Equivalent to the odds of disease (odds of RC)

Notation

- $\mathbf{R}=$ Risk
- IR = Incidence rate
- E+ = Exposed to nickel
- E- = Non-exposed to dimes
- $\mathbf{R}(\mathbf{E}+)=$ Risk in exposed to nickel
- $\operatorname{IR}(E+)=$ Incidence rate in exposed to nickel

Incidence rate (IR) = risk per unit of time

- Risk period = 47 yrs.
- Some subjects followed-up for < 47 yrs.
- E.g., cases, losses to follow-up

Solution \# 1

- = divide risk by average duration of follow-up (24yrs)

Risk $=\left(\frac{\text { New RC cases }}{\text { Pop. at risk }}\right)$

$\begin{aligned} & \text { Incidence } \\ & \text { Rate }\end{aligned}=\left(\frac{\text { New RC cases }}{\text { Pop. at risk * Duration }}\right)$

$$
\left.\begin{array}{rl}
\mathbf{I R}\left(E^{-}\right) & =\left(\frac{90 \text { cases RC }}{450 \text { men } * 24 \mathrm{yrs}}\right) \\
& =\left(\frac{90}{11,000 \text { person- }}\right. \text { years }
\end{array}\right)=0.008 / \mathrm{yr}
$$

Incidence rate (IR) = risk per unit of time

Solution \# 2

- Use person-time as denominator
- 1 person followed for 2 years = 2 person-year
- 1 person followed for 1 year = 1 person-year

Study design

Exposure
Period

Risk

Period

190219251934
1981

lost
$P y=10$

Example

Exposed to Unexposed to Nickel Nickel

Respiratory Cancer
Person-years

100
4,100
11,000
0.008

$\mathbf{I R}(\mathbf{E}+)=\left(\frac{100 \text { cases RC }}{4,100 \text { person-years }}\right)$

$=0.024 / \mathrm{yr}$

What is an attributable risk in this study?

1. The ratio of the risk of RC in exposed to Nickel over the risk in unexposed?
2. The risk of RC that is not due to Nickel exposure
3. The excess rate of RC observed in subjects exposed to nickel compared to unexposed
4. The number of workers that need to be exposed to nickel in order to observe an additional case of RC
5. All of the above

Absolute Effect: Attributable Risk (AR) (2)

$A R=\operatorname{IR}(E+)-\operatorname{IR}(E-)$

$$
\begin{aligned}
& =\text { IR (E+) }- \text { IR }(E-) \\
& =0.024 / \mathrm{yr}-0.008 / \mathrm{yr}=0.016 / \mathrm{yr} \\
& =16 / 1,000 / \mathrm{y} \\
& =\text { Excess IR of RC due to nickel }
\end{aligned}
$$

Attributable Risk

$\operatorname{IR}(E+)=\{\operatorname{IR}(E-)+A R)=[0.008+0.016)=0.024$

- Synonymous:
- Excess Risk
- Risk Difference
- Excess Rate

What is a relative risk in this study?

1. The ratio of the IR of RC in exposed to nickel over the IR in unexposed?
2. The IR of RC that is not due to nickel exposure
3. The excess risk of RC observed among subjects exposed to nickel
4. The number of workers that need to be exposed to nickel in order to observe an additional case of RC
5. None of the above

Relative Effect: Relative Incidence Rate (RIR)*

* Also referred to as relative risk

Relative Effect

- Risk in exposed is a multiple of risk in unexposed
- $\operatorname{IR}(E+)=[\operatorname{IR}(E-) * R I R]=[0.008$ * 3.0]

$$
=0.024 / \mathrm{yr}
$$

Relative Effect

RIR

 Nickel exposure increases RC risk

 No effect of nickel exposure

Relative or Absolute Effect

$\operatorname{IR}(\mathrm{E}+) \quad \operatorname{IR}(\mathrm{E}-)$
 RR AR

24
$/ 1000 / \mathrm{yr}$
60
/1000/yr

8
$/ 1000 / \mathrm{yr}$
20
/1000/yr
3.0

16 /1000/yr

3.0

40
/1000/yr

Interpretation

- Attributable risk measures clinical and public health importance of the causal relationship
- Relative risk assesses strength of the association

Example: Wrapping up

250 Exposed 450 Unexposed To Nickel To Nickel

Respiratory Cancer 10090
Person-years
4,100
11,000
Incidence Rate
0.024/yr
0.008/yr

Relative Incidence rate
3.0

Attributable Risk
0.016/yr

Prospective Studies: Advantages

- Exposure to postulated cause is assessed before occurrence of disease
- Possible to estimate all measures of incidence and effect
- Possible to study several outcomes to one cause

Prospective Studies: Disadvantages

- Requires large investments in time, human and financial resources
- Requires large sample sizes (e.g., 110.000 nurses, 59.600 doctors, 1.2 millions volunteers)
- Not easy to reproduce (Re: consistency of the association)

