

The menstrual cycle

François Pralong

Services d'Endocrinologie, Diabétologie et Métabolisme, Hôpitaux Universitaires de Genève et Lausanne Centre des Maladies CardioVasculaires et Métaboliques, Lausanne

Training Course in Reproductive Health Research – Geneva 2008

Two functions of the ovary

Gametogenesis

Steroidogenesis

Functional anatomy of the ovary

Gonadotropin-independant

Gonadotropin-dependent

Primordial follicles:

ovum + unicellular layer of granulosa cells

Primary follicles:

ovum growing + additional layers of granulosa cells

Primary follicles:

ovum growing + granulosa + theca cells (originating from ovarian stroma)

Accelerated growth of theca and granulosa cells, stimulated by gonadotrophins

Secretion of follicular fluid (rich in E2) by theca and granulosa cells: apparition of antrum

Gonadotropin-dependent

Highly gonadotropindependent

Copyright ©2003 Elsevier Science (USA). All rights reserved.

Follicular growth, gonadotropin dependent

The two cell hypothesis in a preovulatory follicle

The two cell hypothesis in the corpus luteum

Copyright ©2003 Elsevier Science (USA). All rights reserved.

Effects of oestrogens

On uterus: growth at puberty; increase in size of fallopian tubes

On vagina: increase in size; transformation of epithelium, from cuboid to stratified.

On endometrium: prolifération of endometrium; apparition of endometrial glands, useful to implantation and nutrition of fecondated ovum.

Effects of oestrogens

On bone: increase of osteoblastic activity; closure of epiphyses.

On adipose tissue: female-like repartition of fat (mammary gland, thighs)

Copyright ©2003 Elsevier Science (USA). All rights reserved.

The menstrual cycle

The menstrual cycle

FSH Deficiency - Females

FSHβ

FSH-R

Three cases described

Phenotype:

- delayed puberty
- primary amenorrhea
- normal response to FSH with achivement of fertility

Finnish study

Phenotype:

- primary amenorrhea
- ovarian dysgenesis with normal karyotype

FSH Deficiency - Males

FSHβ

FSH-R

Two cases described

Phenotype:

- delayed puberty, low testosterone and absent spermatogenesis
- normal puberty and virilization,
 spermatogenic arrest

Finnish study

- normal virilization
- decreased testicular volume
- variable suppression of spermatogenesis

Role of the FSH/FSH-R System

- Important for estrogen production, follicular maturation and fertility
- Role of FSH in spermatogenesis remains unclear:
 - variable spermatogenesis in FSH-R mutations
 - absent spermatogenesis in FSHβ mutations

LH Deficiency - Females

LH-R

No LH-β mutation yet described in a female patient

- normal external genitalia
- normal pubertal development
- primary amenorrhea
- no pre-ovulatory follicles

LH Deficiency - Males

LHB

LH-R

Two cases described

Bio-inactive LH Impaired heterodimer

Phenotype:

- normal male
- delayed puberty
- response to hCG:

Broad spectrum of phenotypic expression of inactivating mutations

- pseudohermaphroditism and complete azoospermia
- micropenis, delayed puberty and arrest of spermatogenesis

Role of the LH/LH-R System

- Important for normal male development
- LH-R plays a role in spermatogenesis as well as ovulation

LH-R is a candidate gene for male as well as female infertility

Amenorrhea

Primary or secondary

Differential diagnosis

- Physiological processes : Pregnancy, menopause
- Congenital or acquired anomalies
- Hypothalamic pathologies: hypogonadotrope amenorrhea (low LH and FSH)
- Ovarian pathologies: hypergonadotrope amenorrhea (high LH and FSH)

Ovarian insufficiency

Genetic anomalies

(Turner syndrome, FSH inactivating mutations)

Precocious menopause

Acceleration of follicular atresia in women of childbearing age

Chronic anovulation

Often secondary to other endocrine dysfunctions, obesity, or of toxic origin (drugs...)

Polycystic ovarian syndrome

Most frequent endocrine pathology

Consequences of amenorrhea

- Menstrual dysfunction
- Hirsutism/acne (androgene excess)
- Infertility
- Increased risk of endometrial cancer
- Possible increased risk of breast cancer
- Increased cardio-vascular risk
- Increased incidence of diabetes mellitus
- Increased risk of osteoporosis

Consequences of amenorrhea

All occurences of amenorrhea must be worked up, and then taken care of.

Age at menopause in Switzerland

Mean 50 yrs

- precocious <40 yrs</p>
- late >55 yrs

Factors influencing the age at menopause:

Heredity, smoking, ethnical background, climate (?)

Female life expectancy (1997): 82.3 yrs 32.3 yrs in menopause

Physiopathology of menopause: the apoptose phenomenon

Landmarks in ovocyte count in the human

Fœtus: 7 millions

Birth: 1-2 millions

Puberty: 400 000

Follicular depletion accelerates at around 37 yrs: imbalance beetween pro-apoptotic (Bax) and antiapoptotic (Bcl2) transcription factors

Evaluation of ovocyte depletion The Faddy-Gosden equation

Dy/dx = -y[0.0595 + 3716(11780 + y)]

X=age

Y=number of primordial follicles

A=701 000 follicles B=25 000 follicles C=1000 follicles

Faddy et al. Hum Reprod 1996,7, 1342-1346

Production of germinal stem cells by the ovary

Germline stem cells and follicular renewal in the postnatal mammalian ovary

Joshua Johnson*, Jacqueline Canning*, Tomoko Kaneko, James K. Pru & Jonathan L. Tilly

•Germline stem cells present in the ovary, outside follicles

These stem cells are dividing

Nature, Mars 2004

Germline stem cells and follicular renewal in the postnatal mammalian ovary

•Germline stem cells transplanted into recipient ovaries produce new follicles

