

THE IMPLANTATION WINDOW

Mammalian embryos will initiate implantation-type reactions in many different non-uterine sites such as the eye (Runner 1947), the kidney (Fawcett 1950), the spleen and the testis (Kirby 1963).

> Most of the time this is not true for the endometrium because it protects itself from implantation except during a limited period known as the receptive phase.

STEPS OF THE HUMAN IMPLANTATION PROCESS

1. TRANSPORT The blastocyst arrives in the uterus about 72 hours after fetilisation

2. ORIENTATION The inner cell mass is oriented towards the endometrial epithelial lining.

3. HATCHING The zona pellucida dissolves possibly because of the secretion of proteases by trophectodermal cells.

4. APPOSITION The blastocyst is now in close contact with the endometrial lining but no connections have been established. The embryo can still be dislodged by washing.

5. ADHESION Connections of an unknown nature are established between the embryo and the endometrial epithelium. The embryo cannot be dislodged anymore.

STEPS OF THE HUMAN IMPLANTATION PROCESS

6. INVASION Thin folds of trophectodermal cells intrude between the endometrial epithelial cells.

7. DIGESTION At the tips of the invadopodia, integrins anchor the trophoblast to the basement membrane. This binding triggers the secretion of proteases which digest the basement membrane.

8. SYNCYTIALISATION Some trophectodermal cells fuse to form syncytia. These syncytia proliferate and invade the endometrial extracellular matrix.

9. VILLOUS FORMATION The former trophectodermal cells, now called cytotrophoblastic cells migrate between the syncytia followed by the fetal stoma. This will lead to the formation of the placental villi.

STEPS OF THE HUMAN IMPLANTATION PROCESS: <u>Apposition</u>

<section-header><section-header><image><image>

STEPS OF THE HUMAN IMPLANTATION PROCESS: Adhesion

STEPS OF THE HUMAN IMPLANTATION PROCESS: Invasion

CYTOTROPHOBLAST TROPHECTODERMAL CELLS

TROPHOBLAST INVASION

TROPHOBLAST INVASION

Subfamily	MMP	Other names	Substrates
Collage- nases	MMP-1 MMP-8 MMP-13	Interstitial Collagenase Collagenase-3	Col I,II,III,VII,X, Gelatins, Col I, II, III, Col I, II, III
Gelatin- ases	MMP-2 MMP-9	Gelatinase A 72 KDa gelatinase Gelatinase B	Col I, IV, V, VII, X, XI, Gelatins, Fibronectin, Laminin Gelatins, Col IV, V, XIV, Aggrecan. Elastin, Entactin, Vitronectin
Stromely -sins	MMP-3 MMP-7 MMP-10 MMP-11 MMP-12	Stromelysin-1 Matrilysin, PUMP-1 Stromelysin-2 Transin-2 Stromelysin-3 Metallo- elastase	Aggrecan, Col III, IV, IX, X, Gelatins, Fibronectin, Laminin, Tenascin-C, Vitronectin, Elastin, Casein Aggrecan, IGFBP-1 Entactin, Small tenascin-C, Vitronectin, Casein
Mem- brane- type MMPs	MMP-14 MMP-15 MMP-16 MMP-17 MMP-24 MMP-25	MT1-MMP, MMP-X1 MT2-MMP MT3-MMP MT4-MMP MT5-MMP MT6-MMP	Activates proMMP-2 Col I, II, III, Fibronectin, Laminin-1, Vitronectin, Dermatan sulfate proteoglycan : activates proMMP-2, proMMP-13
Others	MMP-19 MMP-20 MMP-23 MMP-26	Matrix metalloprotein-ase Enamelysin MIFR/FEMAL-YSIN Matrilysin-2	Aggrecan amelogenin Gelatin, Beta-Casein fibronectin

REGULATION OF TROPHOBLAST INVASION: TROPHOBLASTIC FACTORS

REGULATION OF TROPHOBLAST INVASION: hCG

INTEGRINS OF THE TROPHOBLAST

SOME	ENDON	ETRIA	NL CYTO	KINES
LIF	EEC			
TNFα	EEC	ESC	Macro	
IL-1			Macro	Endoth
TGFβEE	C ES	C M	acro	
MCSF	EEC		Macro	Endoth

P53: THE DEFENDER OF THE GENOME

THE TUMOUR-SUPPRESSOR P53 IS DYSFUNCTIONAL IN MOST HUMAN CANCER I

wtp53 is a transcription factor that avoids DNA damage to be carried-over to daughter cells. It induces cell cycle arrest or apoptosis. It is thus **anti-oncogenic**

mutp53 has lost this property and is oncogenic. Transfection of mutp53 in normal cells induces an invasive phenotype

CONCLUSIONS

øAn invalid p53 pathway is instrumental to the invasive behaviour of most human tumours.

øThe same seems to be true for trophoblast invasion.

øTrophoblastic p53 is functionally incompetent towards some of its target genes(MMP-2, 9, Bax).

øTrophoblastic p53 is inactive because of a pin-1 induced conformational change and the formation of HMWC

