Photodétection et traitement photodynamique en gynécologie

Dr. A. Major

Photosensitizers

- Porphyrins
 - Photofrin (PF)
 - "Aminolevulinic acid (ALA)",Protoporphyrin IX (PpIX)
- Chlorins
 - m-Tetrahydroxyphenyl chlorin (mTHPC)
 - Benzoporphyrin derivative mono-acid (BPD)
 - Tin ethyl etiopurpurin (SnET2)
- Phtalocyanines

Potential of In Vivo Fluorescence

- Staging laparotomy
 - 30% upstaged (Young RC, JAMA, 1983; Zanetta G, Ann Oncol, 1998)
- Second Look
 - 50% recurrence of negative second-look after combination chemotherapy (DiSaia PJ, Mosby-Year Book, 1997)

Number (percentage) of animals per group that died after PDT (3 hours time interval)

Drug and light dose	Died / Number of animals (time)
200 mg/kg (1.6 J/cm ² , 25min)	4/4 (1 at 5.5h, 2 at 1D, 1 at 3D)
100 mg/kg (1.6 J/cm ²)	2/4 (1 at 2D, 1 at 18D)
50 mg/kg (1.6 J/cm ²)	0/4
50 mg/kg (3.2 J/cm ²)	2/4 (1 at 3D, 1 at 13D)

Major A et al, Am J Obst Gynecol 2000

Site of Metastases in Patientes with Apparent Stage I and II Ovarian Cancer

Re	ef.	Diaphragm	Aortic Lymph Nodes	Pelvic Nodes	Omentum	Positive cytology
18	3		4/21 (19.0 %)	2 /21 (9.5 %)		
21		2/58 (3.4 %)	6 /52 (11.5 %)	1/11 (9.1 %)	6/57 (10.5 %)	
22		3/72 (4.2 %)			7/79 (8.9 %)	
23						7/36 (19.4 %)
24	ļ	1/31 (3.2 %)	0/5 (0 %)		0/5 (0 %)	8/31 (25.8 %)
25	5		2/10 (20.0 %)	0/10 (0 %)		
26)	7/16 (43.8 %)				
27	1		5/26 (19.2 %)	0/9 (0 %)	1/21 (4.8 %)	
28	3					16/44 (36.4 %)
29)					1/10 (10.0 %)
Τα	otal	13/177 (7.3 %)	17/114 (14.9%)	3/51 (5.9 %)	14/162 (8.6 %)	32/121 (26.4 %)

Modified from Berek JS, Hacker NF, Staging and second-look operations in ovarian cancer. In : Piver MS, ed. Ovarian malignancies. Edinburgh : Churchill Livingstone, 1987 : 112, with permission

Clinical Studies in Gynecology

- Endometrial Destruction (PF, ALA, BPD)
- Condyloma
- Cutaneous metastasis of breast cancer
- Cervical and vulvar dysplasia
- Peritoneal cavity (ovarian cancer, endometriosis)

Ovarian cancer staging system by FIGO

Stage		Description	5-vear survival Rate (%)
1. I		Growth limited to the ovaries	90 (30%)
	Ia	One ovary involved no ascitis capsule intact	92
	Ib	Both ovaries involved	85
	Ic	Ascites present, or positive peritoneal washing, tumor on the surface of the ovary	82
2. II		Growth limited to pelvis	57 (10%)
	IIa	Extension to the uterus and the tubes	69
	IIb	Extension to other pelvic tissues	56
	IIc	Like Ic	51
3. III		Growth extending to abdominal cavity, including	24 (32%)
		peritoneal surface and omentum	
	IIIa	Microscopic abdominal implants, negative nodes	39
	IIIb	Macroscopic abdominal implants, < 2 cm, negative node	25
	IIIc	Abdominal implants > 2 cm and/or positive nodes	17
4. IV		Metastases to distant sites (positive pleural cytology,	12 (28%)
		parenchymal liver metastasis)	

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Hubert van den Bergh

Georges Wagnières

Norbert Lange Didier Goujon Nora Dögnitz Tanja Gabrecht Veronique Baulex Thomas Stepinac

Hopitaux Universitaires de Genève

Aldo Campana

Attila Major

Frank Lüdicke Hélène Faltin-Traub Anis Feki

The nurse team Frederic Bylebyle Werner Marie-Lore

Patrick Ubaud

"The facts remains that a large number of patients are being treated almost to the point of "cure" and an additional stroke of some sort is needed."

(DiSaia, Clinical Gynecological Oncology, Mosby-Year Book, 1997)

Potential of Photodynamic Therapy

Preferential Localization of Photosensitizers

- Cell metabolism
 - Activated cell uptake
 - Proliferative rate (mitochondrial potential)
 - Specific marker
- Neovasculature
- pH

Good Photosensitizer

- Low cutaneous phototoxicity
- Non-toxic in dark
- Target localizer
- High absorption in wavelength regions of 600-900 nm
- Low cost light sources
- High singlet oxygen quantum yield

CONCLUSIONS

- ALA-PDT did not succeed in our animal model
- Photodetection has been shown to be efficient in the animal model and feasible in patients
- Photodetection of ovarian cancer peritoneal implants, not visible by other methods, is a conceivable goal for the future
- The impact on survival has to be demonstrated in further studies

AIMS

- To evaluate *photodetection* of ovarian cancer peritoneal implants in the animal model
- To study phancocinetics of the photosensitizer precursor aminolevulinic acid (ALA)
- To evaluate *photodetection* of ovarian cancer peritoneal implants in patients
- To analyse toxicity of ALA *photodynamique therapy* (PDT) in the animal model

PS	Dose (mg/kg)	D / L (hours)	WL (nm)	Light dose (J/cm2)
mTHPC	0.075 - 0.15	96	652 514	5 - 20 75 - 120
ALA-PpIX	60 Topical 20%	4 - 6	635 BLUE	10 - 200
BPD-MA	0.3	1 - 2	690	50 - 150
NPe6	0.5 - 1	4 - 8	664	50 - 100
Lu-Tex	0.6 - 7	3	732	150
SnET2	1.2	24	660	200

Principle of PDT

"SELECTIVE" DESTRUCTION

"SELECTIVE" ILLUMINATION

Historical

1976 J. F. KELLY + M. E. SNELL - <u>First clinical PDT</u> of a bladder carcinoma with HPD. (J. Urol., 115, 150, 1976).

1978 T. J. DOUGHERTY et al.- Clinical assessment of PDT (Cancer Res., 38, 2628, 1978).

! LASERS + OPTICAL FIBERS !

1993 First approval (by the canadian health agency) of PDT with Photofrin® for the prophylactic treatment of bladder cancer.

Survival versus diameter of largest residual disease

