Periconception Care and Primary prevention of neural-tube defects and other congenital abnormalities by periconceptional folic acid/ multivitamin supplementation

Andrew E. Czeizel, M.D., Ph.D., Doct Sci. Budapest, Hungary

Training course in sexual and reproductive health research Geneva 2010 **Concept of Hungarian Periconception Service (HPS) established in 1984**

- Counselling, examinations, and interventions conducted by qualified nurses as part of primary health care.
- Selected couples at risk are referred to specialists in the secondary health care.

Hungarian periconceptional service (HPS)

Included 33,000 couples between 1984 and 2009.

Three stages of HPS

1) Reproductive health check-up. Preconception screening for reproductive risk factors.

2) The 3-month preparation for conception period. The beginning of life is the conception.

 3) Better protection of early pregnancy.
 In general pregnant women visit first prenatal clinics at 6th-10th gestational week

1) Reproductive health check-up

a) Taking family history of prospective mothers and fathers, and obstetric history of females.

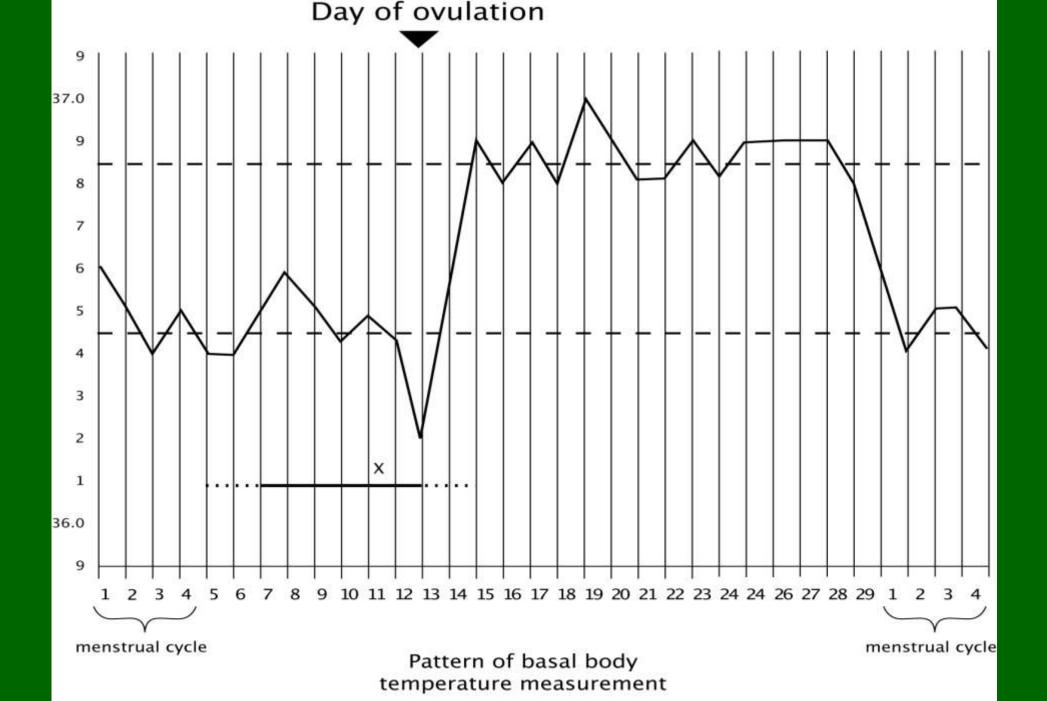
- b) Take the medical history and check available medical records of females, e.g., for epilepsy, diabetes.
- c) Vaginal and cervical smear screening for sexually transmitted infections/disorders.
- d) Sperm analysis to detect subfertility and pyosperm.
- e) Psychosexual assessment.
- f) Varicella vaccination in women not previously exposed to varicella.

g) Blood screening (rubella seronegativity, HIV positivity, in addition carrier screening for cystic fibrosis).

Rate of preterm birth (%) in pregnant women with vaginal infections/diseases according to treatment in the HPS

Study groups	Treated %	Untreated %
Sexually transmitted diseases	6.1	45.8
Sexually transmitted infections (subclinical)	4.8	30.0
Vaginal candidiasis	4.5	10.3
Subclinical vaginal candidiasis	4.0	9.3

Fetal Varicella Disease due to the lack of vaccination



2) The 3-month preparation for conception period

a) Protection of germ cells: avoidance of tobacco, alcohol or narcotic consumption, intake of unnecessary drugs.
b) Discontinuation of oral contraception, and removal of IUDs (condoms are suggested).
c) Occupational history of females.
d) Menstrual history and measurement of basal body temperature for detection of hormonal dysfunction.
e) Start of pre-conceptional multivitamin (including folate) supplements.
f) Recommendation that dental status is checked.

- h) Guidelines for physical exercise.
- i) Guidelines for healthy diet.

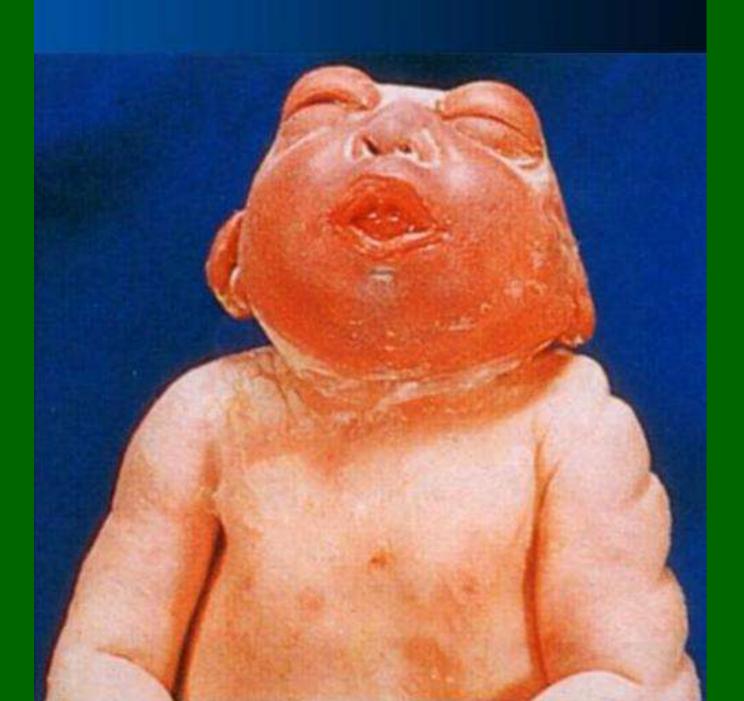
Smoking cessation in HPS				
Period	Females	Males		
Previous smokers	34%	46%		
At the first visit Educational course	17.9%	24.2%		
At the conception	7.9%	18.0%		

Characteristics of Congenital Abnormalities: (CAs)

Have a very early onset

Caused by unfavourable conditions

Optimal solution is prevention


Neural-tube defects (NTD)

1.anencephalus (a, b)

2.encephalocele, occipital

3.spina bifida aperta (a) spina bifida cystica (b) closed spina bifida (c) spinal dysraphism (d)

3/a

Characteristics of NTD

- 1. Polygenic predisposition: recurrence is 10-fold higher than general birth rate.
- 2. Environmental factors: for example socioeconomic factors (diet ?).
- 3. Early critical period: between 15th and 28th postconceptional days, this explains the use of "periconceptional supplementation".

Data and results of previous intervention studies for the reduction of recurrent NTD

Туре	Method	Location	Supplement	Risk Reduction
			Multivitamin	
			(0.36 mg	
Recurrence	Non-randomized	Yorkshire	Folic Acid)	91%
		Northern Ireland		83%
			Folic Acid	
	Randomized	Multicenter MRC	(4.0 mg)	71%

Goals of the Hungarian randomized double-blind controlled trial (RCT)

- About 95% of women with NTD offspring have no previous NTD pregnancies.
- Thus the question is whether the periconceptional folic acidcontaining multivitamin supplementation can reduce the first occurrence of NTD.
- The pharmacological dose (> 1 mg, e.g., 4 mg) of folic acid cannot be recommended for the population at large or without medical supervision.
- Thus, the question is whether a physiological dose (< 1 mg) is effective.
- Investigate possible other beneficial or adverse effects of periconceptional multivitamin supplementation.

RCT

50% of participants in HPS were supplied by 'multivitamin' while other half were supplied by placebo-like trace elements.

Composition of supplements

"Multivitam in		"Placebo-like
(Elevit Pronatal)"		Trace Elements"
Vitamins		
А	4000 IU	
B1	1.6 mg	
B2	1.8 mg	
Nicotinamid	19.0 mg	
B6	2.6 mg	
Calcium Panthothenate	10.0 mg	
Biotin	0.2 mg	
B12	4.0 mcg	
С	100.0 mg	7.5 mg
D	500.0 IU	
E	15.0 mg	
Folic Acid	0.8 mg	
Minerals		
Calcium	125.0 mg	
Phosphorus	125.0 mg	
Magnesium	100.0 mg	
Iron	60.0 mg	
Trace Elements		
Copper	1.0 mg	1.0 mg
Manganese	1.0 mg	1.0 mg
Zinc	7.5 mg	7.5 mg

Result of the RCT: Reduction of the First Occurrence of NTD

Study groups	Number of informative offspring	N	Observed NTD No. per 1000		pected TD per 1000
Multivitamin	2,471	0	0.00	6.9	2.78
Placebo-like trace element	2,391	6*	2.51	6.6	2.78

Relative risk (with 95% confidence interval) = 0.06 (0.00, 0.63)Fisher test $P_2 = 0.01$

* an encephaly 2, spina bifida aperta 2, an encephaly + spina bifida 2

Number and rate (per 1000) of different CA-groups in multivitamin and no multivitamin supplemented group

Categories of CAs	Multivitamin (N=2,471)		No multivitamin (N=2,391)		RR (with 95% CI)
Group of CAs	No.	Rate	No. Rate		
Isolated CAs					
NTD	0	0.0	6	2.51	0.07 (0.04, 0.13)
Orofacial clefts	4	1.62	5	2.09	0.77 (0.22, 2.69)
Cardiovascular CAs	10	4.05	20	8.36	0.42 (0.19, 0.98)
CAs of urinary tract	2	0.81	9	3.76	0.21 (0.05, 0.95)
Limb deficiencies	1	0.40	5	2.09	0.19 (0.03, 1.18)
Cong. pyloric stenosis	2	0.81	8	3.34	0.24 (0.05, 1.14)
Others	22	8.90	32	13.38	0.68 (0.37, 1.10)
Multiple CAs	10	4.05	12	5.02	0.81 (0.36, 1,26)
Total	51	20.64	97	40.57	0.53 (0.35, 0.70)

Conclusion

• Periconceptional supplementation with multivitamin and folic acid reduced the risk of occurrence of NTD and some other CA.

The objectives of cohort controlled trial (CCT)

- 1. To confirm or to exclude the preventive effect of periconceptional multivitamin supplementation for urinary tract and cardiovascular defects, limb deficiencies and pyloric stenosis.
- 2. To get a more accurate estimation for the source of NTD reduction.
- 3. To collect more data of orofacial clefts.

Two Hungarian intervention trials based on HPS to estimate the efficacy of periconceptional folic acid-containing multivitamin supplementation for the prevention of first occurrence of neural tube defects (NTD)

Intervention trials	<u>Supplement</u>	<u>No supplement</u>	
Randomized controlled trial (RCT)			
Number of offspring	2,471	2,391	
Number of NTD	0	6	
RR (with 95% CI)	0.07 (0.04-0.13)		
Cohort controlled trial (CCT)			
Number of offspring	3,056	3,056	
Number of NTD	1	9	
OR (with 95% CI)	0.11 (0.01-0.91)		
Pooled data			
Number of offspring	5,527	5,447	
Expected/observed number of NTD	15.4/1	15.2/15	
OR (with 95% CI)	0.08 (0.01-0.47)		

The efficacy of periconceptional multivitamin supplementation (MS) in the primary prevention of some major groups of congenital abnormalities (CA)

CA groups	RCT No MS (n=2,391)	RCT MS (n=2,471))	CCT No MS (n=3,056)	CCT MS (n=3,056)	Pooled data No-MS (n=5,447)	Pooled data MS (n=5,447)
Cardiovascular CA	20	10	50	31	70	41
OR (95% CI)	0.42	(0.19-0.98)	0.60	(0.38-0.96)	0.57	(0.39-0.85)
Conotruncal CA	10	3	20	8	30	11
Urinary tract CA	9	2	19	14	28	16
OR (95% CI)	0.21	(0.05-0.95)	0.71	(0.33-1.50)	0.56	(0.30-1.04)
Obstructive CA	5	1	19	10	24	11
Cong. limb deficiencies	5	1	3	1	8	2
OR (95% CI)	0.19	(0.03-1.18)	0.33	(0.01-3.71)	0.25	(0.05-1.16)
Orofacial clefts	5	4	3	4	8	8
Cleft lip <u>+</u> palate	3	4	2	3	5	7
Cleft palate	2	0	1	1	3	1
OR (95% CI)	0.77	(0.22-2.69)	1.63	(0.31-2.88)	0.99	(0.37-2.63)
Multiple CA	5	6	15	12	20	18
OR (95% CI)	1.16	(0.35-3.81)	0.79	(0.40-1.48)	0.89	(0.47-1.68)

Other observational studies regarding periconceptional (folic acid containing) multivitamin supplementation

"Other" CAs	" CAs Association		
	confirmed	refused	
Cardiovascular CAs	5	1	
CAs of urinary tract	3	0	
Congenital limb deficiencies	3	0	
Congenital pyloric stenosis	0	1	

Question 1.:

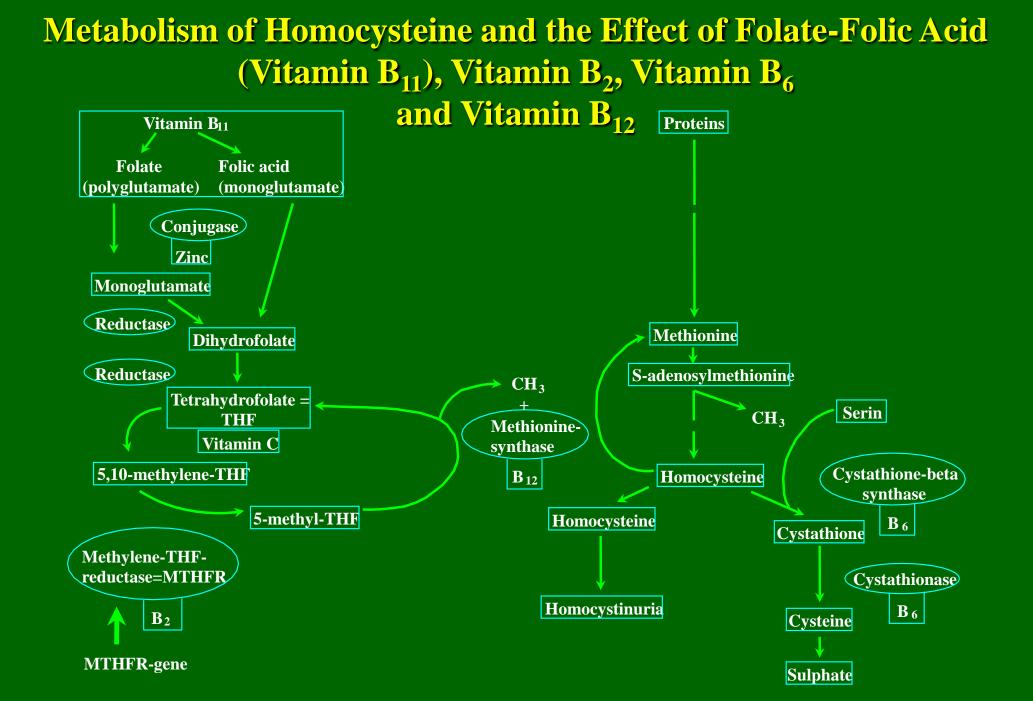
Can folic acid-containing multivitamin prevent other defects beyond neural-tube defects?

Reply – Probable

Congenital abnormality (CA)	Our cohort controlled trial OR 95% CI	US observational studies Yes / No
Cardiovascular CA	0.60, 0.38-0.96	-
Conotruncal CA	0.26, 0.09-0.72	3 / 1
CA of urinary tract	0.74, 0.34-1.55	2 / 0
Obstructive CA of pelvic - ureteric junction	0.15, 0.02-0.68	-
Limb deficiencies	0.25, 0.05-1.16	3 / 0
/terminal transverse)		

WHO Expert Committee (2004)

Folic acid-containing multivitamins can reduce the incidence of congenital defects by about one third


Question 2.:

What is the mechanism of folic acid or folic acid-containing multivitamins in the prevention of NTD and other CA? Reply

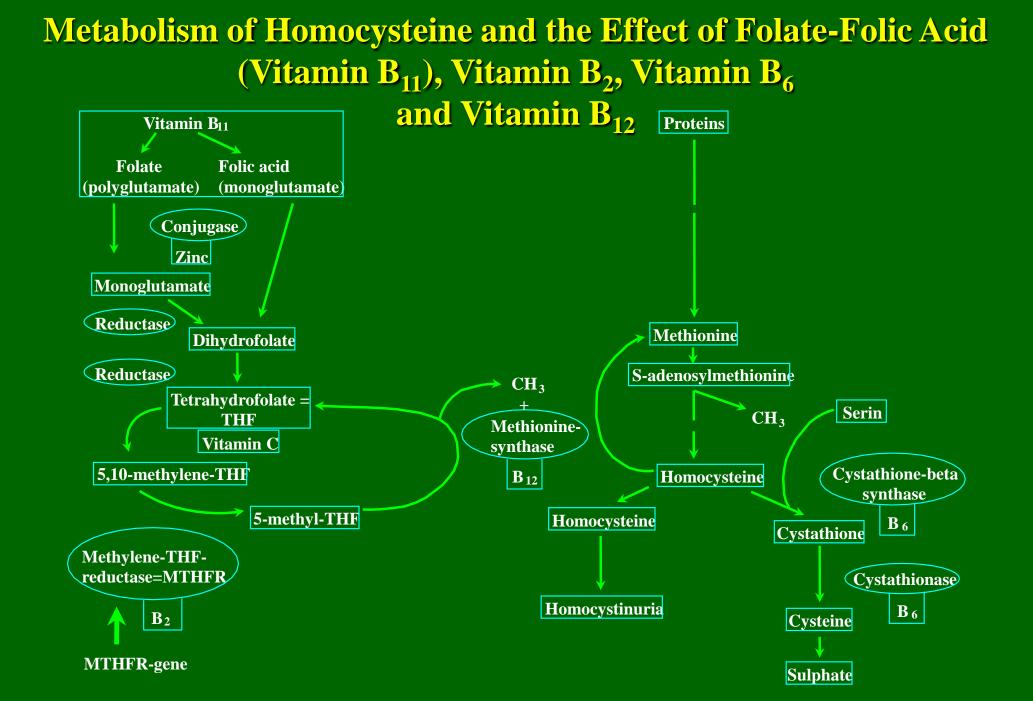
These CAs are caused by

polygenic – environmental interaction

different gene mutations, e.g. hyperhomocysteinemia different factors, mainly dietary vitamin (folate) deficiency

MTHFR gene

- Gene location: Chromosome I, short arm 36.3
- Mutation: $677 T \rightarrow C$
- Frequency of
 - mutant homozygosity: 5-15 % (11%)
 - heterozygosity: 25-65% (45%)


Detoxication of homocysteine needs

CH3 produced by MTHFR due to folate/folic and MTHFR gene-pair + vitamin B2

Methioninesynthase + vitamin B12

Cystationsynthase + vitamin B6

Reducation of hyperhomocysteinemia by Vitamin B11 (folate, folic acid) Vitamin B12 (cobalamine) Vitamin B6 (pyridoxine) Vitamin B2 (riboflavin) because these "fetal protective vitamins" can stimulate MTHFR activity on the contrary of homo – or heterozygosity of MTHFR gene-pair

Question 3.:

Is dietary strategy to increase folate intake can neutralise the genetic predisposition for these CAs? Reply: unlikely

Low mean folate intake Optimal dose for prevention of NTD (McPartlin et al., 1993) Difference (15 plates of spinach or broccoli!) 0.18 mg/day

0.66 mg/day 0.50 mg/day

(15 plates of spinach or broccoli!)Low bioavailability of folate in food (30-80%)There is a threshold in folate absorption from gastroenteral system

Question 4.:

What is optimal recommendation?

Periconceptional folic acid or folic acidcontaining supplementation seems to be appropriate.

Question 5.:

Whether folic acid alone or folic acidcontaining multivitamin is better?

Folic acid alone or fol multivitamin	ic acid-containing
Folic acid alone	Multivitamin
Effi	cacy
70% of NTD	90% of NTD
Othe	er effects
?	Prevention of other major CAs
Other arguments in hype	erhomocysteinemia related NTD
Key factor are	Vitamin B12, B2 and B6 independent factors
Cos	st
Low	Moderate (reimbursement)

Question 6.:

Which multivitamin is recommended?

There is only one product (Elevit®) that was tested in RCT.

Question 7.:

What is the optimal dose of folic acid?

No scientific evidence. There are two forms of Vitamin 11 (or 9) dietary polyglutamate folate synthetic monoglutamate folic acid.

US recommendation 0.4 mg (400 microgram) folic acid The Institute of Medicine, US National Academy (1998) – European Commission Scientific Committee on Food (1998) **physiological dose** of folic acid (less than 1 mg) for preventive purpose in healthy people; pharmacological dose of folic acid (more than 1 mg) for treatment of patients or under permanent medical control.

Pros and cons

Wald et al (2001): dose/effect relation for folic acid in the reduction of hyperhomocysteinemia and related NTD.

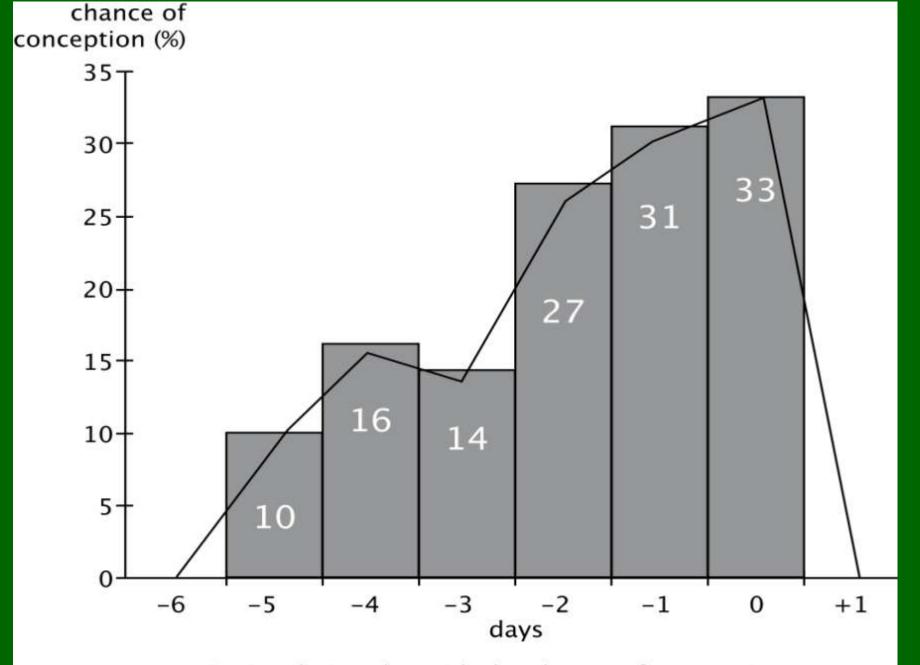
Daily et al (1997): there is no obvious increase in the reduction of NTD due to higher doses of folic acid.

Reasonable recommendation:

Folate0.2 - 0.3 mgFolic acid0.7 - 0.8 mgTogether1.0 mg

Food Fortification

USA: Folic Acid: 0.14 mg/100 g flour Canada Chile Some other countries Hungary:Folic Acid: 0.20 mgVitamin B_{12} : 1 mcgVitamin B_6 : 1.80 mgto 200 g breadand flour


Conclusion

Inertia on the use of folic acid or folic acid containing multivitamins for the primary prevention of CAs is medical malpractice

3) Better protection of early pregnancy

a) Undertaking of all additional investigations/treatments necessitated by conditions and disorders detected at the preconception check-up. b) Check the investigations and treatment of women shown to suffer from hormonal dysfunction. c) Optimal timing of conception in relation to ovulation. d) Early pregnancy confirmation using pregnancy tests and ultrasound scanning. e) Post-conceptional multivitamin supplementation. f) Avoidance of teratogenic and other risks. g) Referral of pregnant women to prenatal care clinics.

Periovulation day with the chance of conception

Optimal day of conception is one day prior to ovulation due to reduction of overriped egg and high efficacy of conception.

The rate of adverse pregnancy outcomes (%) in the participants of HPS and in the Hungarian population

Adverse pregnancy outcomes	HPS	Hungarian population	
Fetal death			
Ectopic pregnancy	0.3	1.0	
Miscarriage	10.6	12.5	
Stillbirth	0.3	0.6	
Live births			
Preterm birth	4.4	9.2	
Congenital abnormality	2.1	4.0	
Mental retardation	0.8	3.3	

Final conclusion

Proper preparation for conception is the most effective method for the prevention of adverse pregnancy outcomes.